当前位置: 首页 > news >正文

基于51单片交通灯控制器_紧急+行人+总开关

基于51单片交通灯控制器_紧急+行人+总开关

目录标题

  • 基于51单片交通灯控制器_紧急+行人+总开关
    • 基本功能
    • 仿真图
      • 正常显示
      • 强制南北方向通行
      • 强制东西方向通行
      • 总开关
    • 程序
      • 关键程序代码
      • 程序讲解
        • 倒计时的产生
        • 红黄绿灯状态处理
          • 正常运行状态
          • 强制南北绿灯通行
          • 总开关关断
      • 数码管倒计时处理
      • 按键驱动
    • 资料清单

(程序+仿真+仿真视频)

仿真:proteus 7.8

程序编译器:keil 4/keil 5

编程语言:C语言

设计编号:J004

基本功能

\1. 设计一个十字路口交通灯控制器;

\2. 用单片机控制LED灯模拟指示,设置人行道;

\3. 东西通行时间为8s,南北通行时间为6s,缓冲时间为3s黄灯闪烁;

\4. 设置紧急按键,可强制使东西通行,或南北通行;

\5. 设置清除按键,如遇特殊清除,按下按键,所有灯灭;

\6. 具体秒数可在程序改数字实现。

仿真图

正常显示

1.正常倒计时和红黄绿灯显示

image-20220830234343295

强制南北方向通行

设置紧急按键,强制南北方向绿灯通行

image-20220830234416267

强制东西方向通行

设置紧急按键,强制东西方向绿灯通行

image-20220830234427533

总开关

设置清除按键,如遇特殊清除,按下按键,所有灯灭;

image-20220830234435579

程序

image-20220830234505780

关键程序代码

#include<reg51.h>
#include<intrins.h>

//数据类型定义
typedef unsigned char uchar;
typedef unsigned int  uint;
#define ON  1//给led灯引脚高电平,亮灯
#define OFF 0//给led灯引脚低电平,灭灯
void led_sacn();
void delay_ms(ms);
void seg_disp(uchar number,uchar wei);
void KeyAction(uchar key);		
void KeyScan();
void KeyDriver();		

//通用IO引脚分配  位选引脚P00-p07
sbit W0=P3^4; //段选引脚0
sbit W1=P3^5; //段选引脚1
sbit W2=P3^6; //段选引脚2
sbit W3=P3^7; //段选引脚3
//按键选择
sbit KEY1=P1^0; //按键1
sbit KEY2=P1^1;	//按键2
sbit KEY3=P1^2; //按键3
sbit KEY4=P1^3;	//按键4
//红绿灯选择
sbit ns_green  = P2^0;//南北方向绿灯
sbit ns_yellow = P2^1;//南北方向黄灯
sbit ns_red    = P2^2;//南北方向红灯
sbit we_green  = P2^3;//东西方向绿灯
sbit we_yellow = P2^4;//东西方向黄灯
sbit we_red    = P2^5;//东西方向红灯
sbit ns_p_green= P2^6;//南北方向人行绿灯
sbit ns_p_red  = P2^7;//南北方向人行红灯

bit flag1s;
uchar one_sec_flag,half_sec_flag,main_road_time,secondary_road_time;
//1秒标志位  _0.5标志位_南北方向倒计时_东西方向倒计时
uchar state=0;//正常模式不同的状态 0123 
uchar run_mode = 0;//0是正常模式,1是紧急模式 2东西通行 3南北通行
uchar code seg_du[]={0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71};

uchar ns_green_cnt=6,yellow_cnt =3,we_green_cnt=8;
//红灯时间        _黄灯时间    _绿灯时间


uchar half_flag1s;//0.5秒标志位

void main()
{
	EA=1;	//开总中断
	TMOD|= 0X01;
	TH0=0X4C;
	TL0=0X00;//11.0592M晶振 50ms定时初值
	ET0=1; //允许定时器1中断
	TR0=1;//启动定时器0  
	
	while(1)
	{	
		led_sacn();				  		//LED和数码管显示,时刻刷新
		KeyDriver();

		if(flag1s)//一秒执行一次
		{
			flag1s=0;
			main_road_time--;			//红绿灯倒计时时间减
			secondary_road_time--;
			if (state == 2){
				ns_yellow =~ns_yellow;
			}else if(state == 0){
					we_yellow=~we_yellow;
			}
		}		
	}
}

void led_sacn()
{
	 if(run_mode==0)			 //0 正常运行
	 {
		if(main_road_time==0 || secondary_road_time==0)//当主干道或者次干道倒数到0,切换状态。
		//这一段程序只有倒计时为0才执行一次,执行完一次等下一次倒计时为0才再执行一次
		{
			switch(state)//改变红绿灯的状态
			{
				case 0:
				{
					state=1;//下次切换到下一个模式
					main_road_time=ns_green_cnt;//主干道绿灯通行时间
					secondary_road_time=ns_green_cnt+yellow_cnt; 
					 we_red    = ON;
					 we_yellow = OFF;
					 we_green  = OFF;
					 ns_red    = OFF;
					 ns_yellow = OFF;
					 ns_green  = ON;
					 ns_p_green= ON;
					 ns_p_red  = OFF;
				}break;
				case 1:
				{
					state=2;
					main_road_time = yellow_cnt;//主干道直行黄灯时间
					we_red	  = ON;
					we_yellow = OFF;
					we_green  = OFF;
					ns_red	  = OFF;
					ns_yellow = ON;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = ON;	
				}break;
				case 2:
				{
					state=3;
					main_road_time=we_green_cnt;
					secondary_road_time =we_green_cnt+yellow_cnt;
					we_red	  = OFF;
					we_yellow = OFF;
					we_green  = ON;
					ns_red	  = ON;
					ns_yellow = OFF;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = ON;		
				}break;
				case 3:
				{
					state=0;
					main_road_time=yellow_cnt;
					we_red	  = OFF;
					we_yellow = ON;
					we_green  = OFF;
					ns_red	  = ON;
					ns_yellow = OFF;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = ON;		
				}break;
				
				default:break;
			}
		}
		
		seg_disp(main_road_time/10,0);//显示W0控制的数码管 时刻刷新
		seg_disp(main_road_time%10,1);//显示W1控制的数码管
		seg_disp(secondary_road_time/10,2);//显示W2控制的数码管
		seg_disp(secondary_road_time%10,3);//显示W3控制的数码管
		
	}else if(run_mode==1){//设置南北绿灯通行时间
		    seg_disp(ns_green_cnt/10,0);//显示W0控制的数码管
		    seg_disp(ns_green_cnt%10,1);//显示W1控制的数码管
			ns_red	  = OFF;
			ns_yellow = OFF;
			ns_green  = ON;
			we_red	  = OFF;
			we_yellow = OFF;
			we_green  = OFF;
	  		ns_p_green= ON;
			ns_p_red  = OFF;

	}	else if(run_mode==2){//设置东西方向绿灯时间
	   		seg_disp(we_green_cnt/10,2);//显示W2控制的数码管
	    	seg_disp(we_green_cnt%10,3);//显示W3控制的数码管
			ns_red	  = OFF;
			ns_yellow = OFF;
			ns_green  = OFF;
			we_red	  = OFF;
			we_yellow = OFF;
			we_green  = ON;
			ns_p_green= OFF;
			ns_p_red  = ON;


	}else if(run_mode==3){		
			ns_red	  = OFF;
			ns_yellow = OFF;
			ns_green  = OFF;
			we_red	  = OFF;
			we_yellow = OFF;
			we_green  = OFF;
		  	ns_p_green= OFF;
			ns_p_red  = OFF;

	}
}

void seg_disp(uchar number,uchar wei)	//数码管动态显示程序 wei代表数码管W0 W1 W2 W3的位选
{
	P0=0XFF;//清零,防止重影
	W0=W1=W2=W3=1;
	if(wei == 0){//显示第一位
		W0=0;
		P0=seg_du[number];
		delay_ms(2);
		W0=1;
	}
	if(wei == 1){//显示第二位
		W1=0;
		P0=seg_du[number];
		delay_ms(2);
		W1=1;
	}
	if(wei == 2){//显示第三位
		W2=0;
		P0=seg_du[number];
		delay_ms(2);
		W2=1;
	}
	if(wei == 3){//显示第四位
		W3=0;	
		P0=seg_du[number];
		delay_ms(2);
		W3=1;
	}
}

void delay_ms(ms)	  //演示函数,大概精度
{
	uchar value=ms,i;
	while(value--) 
	for(i=0;i<110;i++);
}
void Timer0() interrupt 1
{
	TH0=0XBB;
	TL0=0X00;
	KeyScan();
	if(++half_sec_flag>25){
		half_sec_flag=0;
		half_flag1s=1;

	}
	if(++one_sec_flag<50){
		return;//提前结束函数
		}
	
	one_sec_flag=0;
	if(run_mode==0){//不是正常运行时,不红绿灯数值不减一 
		flag1s=1;	
	}
}

程序讲解

主要的核心点是倒计时,主干道直行绿灯时间+黄灯时间=次干道红灯时间,

在次干道红灯的过程中,主干道完成了绿灯倒计时+黄灯倒计时两个步骤。

倒计时的产生

记住这个点就可以设计软件了。首先要有时间基础,倒计时从哪来呢?

一般两个来源:

1,延时

delay(1000ms);

通过死循环卡主软件的运行来达到延时效果,程序执行效率极低,不可取。

2,定时

通过定时器产生时基。软件设置50ms产生一次定时中断,在中断执行函数中做计数。

	EA=1;	//开总中断
	TMOD|= 0X01;
	TH0=0X4C;
	TL0=0X00;//11.0592M晶振 50ms定时初值
	ET0=1; //允许定时器1中断
	TR0=1;//启动定时器0  

20ms执行一次中断函数,通过one_sec_flag累加到50判断时间过去了一秒。设置一秒标志位flag1s置一。

void Timer0() interrupt 1
{
	TH0=0XBB;
	TL0=0X00;
	KeyScan();
	if(++half_sec_flag>25){
		half_sec_flag=0;
		half_flag1s=1;

	}
	if(++one_sec_flag<50){
		return;//提前结束函数
		}
	
	one_sec_flag=0;
	if(run_mode==0){//不是正常运行时,不红绿灯数值不减一 
		flag1s=1;	
	}
}

在主函数while循环里判断标志位,如果是1,则倒计时计数值减一,即完成了倒计时的软件设计思路

if(flag1s)//一秒执行一次
		{
			flag1s=0;
			main_road_time--;			//红绿灯倒计时时间减
			secondary_road_time--;
			if (state == 2){
				ns_yellow =~ns_yellow;//黄灯闪烁
			}else if(state == 0){
					we_yellow=~we_yellow;//黄灯闪烁
			}
		}		

红黄绿灯状态处理

分为三个主要状态

正常运行状态

交通灯状态实际上分为四个状态:

1.主干道绿灯通行,次干道红灯

2.主干道黄灯通行,次干道红灯

3.主干道红灯,次干道绿灯通行

4.主干道红灯,次干道黄灯通行

做一个状态机,设置四个状态,在四个状态的变化中,设置红绿黄灯的亮和灭实现基础交通灯运行逻辑

image-20220829214546328

 if(run_mode==0)			 //0 正常运行
	 {
		if(main_road_time==0 || secondary_road_time==0)//当主干道或者次干道倒数到0,切换状态。
		//这一段程序只有倒计时为0才执行一次,执行完一次等下一次倒计时为0才再执行一次
		{
			switch(state)//改变红绿灯的状态
			{
				case 0:
				{
					state=1;//下次切换到下一个模式
					main_road_time=ns_green_cnt;//主干道绿灯通行时间
					secondary_road_time=ns_green_cnt+yellow_cnt; 
					 we_red    = ON;
					 we_yellow = OFF;
					 we_green  = OFF;
					 ns_red    = OFF;
					 ns_yellow = OFF;
					 ns_green  = ON;
					 ns_p_green= ON;
					 ns_p_red  = OFF;
				}break;
				case 1:
				{
					state=2;
					main_road_time = yellow_cnt;//主干道直行黄灯时间
					we_red	  = ON;
					we_yellow = OFF;
					we_green  = OFF;
					ns_red	  = OFF;
					ns_yellow = ON;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = ON;	
				}break;
				case 2:
				{
					state=3;
					main_road_time=we_green_cnt;
					secondary_road_time =we_green_cnt+yellow_cnt;
					we_red	  = OFF;
					we_yellow = OFF;
					we_green  = ON;
					ns_red	  = ON;
					ns_yellow = OFF;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = ON;		
				}break;
				case 3:
				{
					state=0;
					main_road_time=yellow_cnt;
					we_red	  = OFF;
					we_yellow = ON;
					we_green  = OFF;
					ns_red	  = ON;
					ns_yellow = OFF;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = ON;		
				}break;
				
				default:break;
			}
		}
		
		seg_disp(main_road_time/10,0);//显示W0控制的数码管 时刻刷新
		seg_disp(main_road_time%10,1);//显示W1控制的数码管
		seg_disp(secondary_road_time/10,2);//显示W2控制的数码管
		seg_disp(secondary_road_time%10,3);//显示W3控制的数码管
		
	}
强制南北绿灯通行
else if(run_mode==1){//设置南北绿灯通行时间
		    seg_disp(ns_green_cnt/10,0);//显示W0控制的数码管
		    seg_disp(ns_green_cnt%10,1);//显示W1控制的数码管
			ns_red	  = OFF;
			ns_yellow = OFF;
			ns_green  = ON;
			we_red	  = OFF;
			we_yellow = OFF;
			we_green  = OFF;
	  		ns_p_green= ON;
			ns_p_red  = OFF;

	}

强制东西绿灯通行

else if(run_mode==2){//设置东西方向绿灯时间
	   		seg_disp(we_green_cnt/10,2);//显示W2控制的数码管
	    	seg_disp(we_green_cnt%10,3);//显示W3控制的数码管
			ns_red	  = OFF;
			ns_yellow = OFF;
			ns_green  = OFF;
			we_red	  = OFF;
			we_yellow = OFF;
			we_green  = ON;
			ns_p_green= OFF;
			ns_p_red  = ON;


	}
总开关关断

实际上就是把灯关掉,把显示关掉,倒计时数值归零

else if(run_mode==3){		
			ns_red	  = OFF;
			ns_yellow = OFF;
			ns_green  = OFF;
			we_red	  = OFF;
			we_yellow = OFF;
			we_green  = OFF;
		  	ns_p_green= OFF;
			ns_p_red  = OFF;

	}

数码管倒计时处理

动态显示倒计时时间

void seg_disp(uchar number,uchar wei)	//数码管动态显示程序 wei代表数码管W0 W1 W2 W3的位选
{
	P0=0XFF;//清零,防止重影
	W0=W1=W2=W3=1;
	if(wei == 0){//显示第一位
		W0=0;
		P0=seg_du[number];
		delay_ms(2);
		W0=1;
	}
	if(wei == 1){//显示第二位
		W1=0;
		P0=seg_du[number];
		delay_ms(2);
		W1=1;
	}
	if(wei == 2){//显示第三位
		W2=0;
		P0=seg_du[number];
		delay_ms(2);
		W2=1;
	}
	if(wei == 3){//显示第四位
		W3=0;	
		P0=seg_du[number];
		delay_ms(2);
		W3=1;
	}
}

按键驱动

主要是做扫描,扫描后做相应的标志位,状态机处理

uchar keystr[]={1,1,1,1},backup[]={1,1,1,1};
void KeyScan()						        	//键盘扫描
{
	static uchar keybuf[4]={0XFF,0XFF,0XFF,0XFF};
	uchar i;
	keybuf[0]=(keybuf[0]<<1)|KEY1;
	keybuf[1]=(keybuf[1]<<1)|KEY2;
	keybuf[2]=(keybuf[2]<<1)|KEY3;
	keybuf[3]=(keybuf[3]<<1)|KEY4;
	for(i=0;i<4;i++)
	{
		if(keybuf[i]==0X00)			keystr[i]=0;
		else if(keybuf[i]==0XFF) 	keystr[i]=1;
	}
}
void KeyAction(uchar key)					 	//键盘执行
{
	switch(key)
	{
		case 0:	
			if(run_mode==0){	//紧急
					run_mode=1;//设置南北
			}else if(run_mode==1){
				    run_mode=2;//设置东西
			}else if(run_mode==2){
				     run_mode=0;
					 //重新开始运行
					 main_road_time=0;
					 secondary_road_time=0;
					 state=0;
					 
			}
		  break;	
		case 3: //紧急
			if(run_mode==0){
			 run_mode=3; 
			}else if(run_mode==3){
				run_mode=0;//正常
			switch(state)//恢复进入紧急模式前的状态
			{
				case 1:
				{
					 we_red    = ON;
					 we_yellow = OFF;
					 we_green  = OFF;
					 ns_red    = OFF;
					 ns_yellow = OFF;
					 ns_green  = ON;
				  	 ns_p_green= ON;
					 ns_p_red  = OFF;
				}break;
				case 2:
				{
					we_red	  = OFF;
					we_yellow = ON;
					we_green  = OFF;
					ns_red	  = OFF;
					ns_yellow = ON;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = OFF;	
				}break;
				case 3:
				{
					we_red	  = OFF;
					we_yellow = OFF;
					we_green  = ON;
					ns_red	  = ON;
					ns_yellow = OFF;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = OFF;
						
				}break;
				case 0:
				{
					we_red	  = OFF;
					we_yellow = ON;
					we_green  = OFF;
					ns_red	  = OFF;
					ns_yellow = ON;
					ns_green  = OFF;
					ns_p_green= OFF;
					ns_p_red  = OFF;
						
				}break;
				
				default:break;
			 }	
			}

			break;
			  default:break;
	}
}

资料清单

img

资料下载

相关文章:

  • Java 随笔 代理模式 1-spring aop
  • Kotlin(十一)Kotlin中的Object关键字
  • java服务器端开发-servlet:2_0、Servlet执行过程介绍:get请求与post请求、编码相关等
  • 自己整理的“无培训广告”的技术公众号!
  • springboot logback-spring.xml 整合apollo实现动态配置日志级别
  • 完全背包问题
  • 【python中级】func_timeout程序超时处理
  • JUC 并发编程_锁
  • java基于springboot+vue的高校大学生社团活动管理系统
  • 框架之SpringBoot基础(二)
  • 【小程序】中WXS的语法详解
  • Spring Cloud Gateway - GatewayFilter路由过滤器
  • 猿创征文|大数据之Kafka简介+基操
  • Shiro授权--注解式开发
  • CREO:CREO软件之零件【编辑】之修饰、用户定义特征的简介及其使用方法(图文教程)之详细攻略
  • .pyc 想到的一些问题
  • [译]Python中的类属性与实例属性的区别
  • es6(二):字符串的扩展
  • ES6简单总结(搭配简单的讲解和小案例)
  • golang 发送GET和POST示例
  • python 学习笔记 - Queue Pipes,进程间通讯
  • SOFAMosn配置模型
  • thinkphp5.1 easywechat4 微信第三方开放平台
  • Webpack入门之遇到的那些坑,系列示例Demo
  • 从setTimeout-setInterval看JS线程
  • 后端_MYSQL
  • 机器学习中为什么要做归一化normalization
  • 力扣(LeetCode)22
  • 浏览器缓存机制分析
  • 前言-如何学习区块链
  • 如何借助 NoSQL 提高 JPA 应用性能
  • 如何在 Tornado 中实现 Middleware
  • 算法-插入排序
  • 最近的计划
  • 阿里云API、SDK和CLI应用实践方案
  • 曜石科技宣布获得千万级天使轮投资,全方面布局电竞产业链 ...
  • ​【原创】基于SSM的酒店预约管理系统(酒店管理系统毕业设计)
  • #ubuntu# #git# repository git config --global --add safe.directory
  • $HTTP_POST_VARS['']和$_POST['']的区别
  • (1)STL算法之遍历容器
  • (C#)Windows Shell 外壳编程系列4 - 上下文菜单(iContextMenu)(二)嵌入菜单和执行命令...
  • (差分)胡桃爱原石
  • (三)Pytorch快速搭建卷积神经网络模型实现手写数字识别(代码+详细注解)
  • (已解决)报错:Could not load the Qt platform plugin “xcb“
  • (转) 深度模型优化性能 调参
  • (转)程序员技术练级攻略
  • (转载)虚函数剖析
  • **CI中自动类加载的用法总结
  • .cfg\.dat\.mak(持续补充)
  • .net core 依赖注入的基本用发
  • .NET gRPC 和RESTful简单对比
  • .Net Memory Profiler的使用举例
  • .NET 分布式技术比较
  • .net 提取注释生成API文档 帮助文档
  • .NET 中使用 TaskCompletionSource 作为线程同步互斥或异步操作的事件