当前位置: 首页 > news >正文

为 Compose MultiPlatform 添加 C/C++ 支持(1):在 kotlin 中使用 cinterop 实现与 C/C++ 互操作

前言

在安卓中我们可以使用 jvm 提供的 jni 方便的编写 C/C++ 代码并与 java/kotlin 互操作。

但是当使用 kotlin MultiPlatform 时想要调用 C/C++ 代码将变得麻烦甚至是不可用,因为对于 Android 和 Desktop 来说依旧使用的是 jvm ,所以只要稍微适配一下也不是不能用。但是如果涉及到使用 kotlin native 的平台,比如 iOS,那么就无法再使用 jvm 的 jni 了。

此时,我们只能使用 kotlin 提供的 cinterop 实现与 C/C++ 的互操作。

只是这样又带来一个问题,那就是由于 Android 和 Desktop 平台使用的是 jvm,所以 cinterop 又不太好使了。

因此为了实现全平台的 C/C++ 互操作,我们需要使用 kotlin 的 expectactual 分别适配不同平台的互操作。

因为 jvm 平台使用 jni 比较简单,相信各位安卓开发都有使用过,所以在第一部分我们将首先介绍非 jvm 平台的 cinterop 。

万事都得从头开始,不要妄想一口吞一个大胖子,所以本文我们将从简单的开始,以 Desktop 端举例如何配置及使用 cinterop 。

注意:有一点需要明确的是,上文中我们既说 Desktop 是 jvm 实现,又说要使用 Desktop 举例使用 cinterop。这是因为 Compose Desktop 使用的是 jvm 实现,不支持 native,也就不支持 cinterop,但是单纯的 Kotlin Desktop 程序(非 Compose)是支持使用 native 的,所以可以使用 Desktop 举例使用 cinterop 。

Hello,World

Hello,World 是我们程序员永远的第一次,所以这次我们也以一个 Hello World 作为我们的示例项目。

首先,在 intelliJ 中新建一个项目 Kotlin Multiplatform - Native Application

1.jpg

接着在项目的 src 目录新建一个 nativeInterop/cinterop 目录,这个目录名称也可以是任意名称,而 nativeInterop/cinterop 是默认配置目录。

在创建好的 nativeInterop/cinterop 新建一个 libtest.h 文件。

在该文件中定义我们需要暴露给 kt 调用的函数:

#ifndef LIB2_H_INCLUDED
#define LIB2_H_INCLUDEDchar* get_message(char* name);#endif

这里我们定义了一个函数 get_message 接收一个字符数组(字符串)参数 name 并返回一个字符数组。

然后,再在这个目录新建一个 libtest.def 文件用于映射刚才的 .h 文件和 kt 函数:

headers = libtest.h

headers 参数用于指明需要映射的头文件,这里我们指向了相同目录的 libtest.h 文件。

完成后的目录结构应该是这样的:

2.jpg

现在,我们可以在 kt 文件中调用刚才声明的 get_message 函数了,在 Main.kt 文件中:

@OptIn(ExperimentalForeignApi::class)
fun main() {println(get_message("world and equationl".cstr)?.toKString())
}

此时,Main.kt 文件应该会报错找不到 get_message ,先不急,我们先接着配置。

在项目的 build.gradle.kts 文件中,找到 kotlin 代码块下的 nativeTarget 代码块,并在其中添加如下代码:

kotlin {// ……nativeTarget.apply {compilations.getByName("main") {cinterops {val libtest by creating}}// ……}
}

这样,cinterop 会在默认目录查找和 libtest 同名的 def 文件进行编译。

当然,也可以自定义参数:

kotlin {// ……nativeTarget.apply {compilations.getByName("main") {cinterops {val libtest by creating {defFile(project.file("src/nativeInterop/cinterop/libtest.def"))compilerOpts("-Isrc/nativeInterop/cinterop")}}}// ……}
}

其中,defFile 参数指定了 def 文件的位置;compilerOpts 参数指定了需要的编译选项。

修改完成后 sync 一下 gradle,然后返回 Main.kt 文件,现在可以看到 IDE 已经提示可以导入 get_message 了,导入后文件不再报错:

3.jpg

需要注意的是,此时直接运行是运行不了的,因为刚才我们只是定义了 get_message 函数,但是并没有写具体的实现。

现在我们需要写上这个函数的实现,修改 libtest.def 文件为:

headers = libtest.h---#include <string.h>char* get_message(char* name) {char *greeting = "hello, ";char* message = (char *) malloc(strlen(greeting) + strlen(name));strcpy(message, greeting);strcat(message, name);return message;
}

没错,我们可以直接在 def 文件下方添加具体的代码,只要将代码和配置信息使用三个横杠 --- 隔开即可。

上述的 C 代码非常简单,就是把接收到的 name 参数和 "hello, " 字符串拼接后再返回。

现在,我们再来运行 Main.kt,结果如下:

4.jpg

可以看到输出完美符合预期。

在上述的 get_message 实现我们是直接写在了 def 文件中,事实上,def 文件中的代码在编译时最终还是会附加到配置的 .h 文件末尾,也就是说,我们完全可以直接把代码写到 .h 文件中,这样还能有代码高亮和代码提示,直接写在 def 文件中的话,代码就是个普通文本,对查看和修改代码都很不方便。

但是有一点需要注意,cinterop 只有在 def 文件发生改变了才会重新编译,换句话说,如果不把代码写在 def 文件中的话,每次修改都需要手动执行 gradlew clean 清除编译缓存后再运行,否则修改不会被重新编译。

咱也不知道这是个 BUG 还是个 feature 啊,反正我查资料的时候看到早在 2021 年就有人在 jetbrains 的 youtrack 上反馈类似的问题了,当时官方回复是已记录该问题,但是事实证明两年过去了这个问题依旧存在。

不管怎么说,为了让代码更好看,我们还是把具体实现单独抽出到一个 .c 文件 libtest.c 中吧:

#include <string.h>char* get_message(char* name) {char *greeting = "hello, ";char* message = (char *) malloc(strlen(greeting) + strlen(name));strcpy(message, greeting);strcat(message, name);return message;
}

然后在 libtest.h 中引入这个文件:

#ifndef LIB2_H_INCLUDED
#define LIB2_H_INCLUDEDchar* get_message(char* name);#include<libtest.c>#endif

最后需要注意的一点是,cintrtop 映射到 kt 函数只支持 C 不支持 C++,但是这并不意味着就无法使用 C++,只要把 C++ 再使用 C 包装一遍,然后暴露给 kt 即可。

接下来,我们简单介绍下 kt 和 c 之间的数据互相映射。

kt 与 c 的数据映射

基本数据类型映射

先上一个结论表格,方便大家查阅:

Ckotlin
charByte
unsigned charUByte
shortShort
unsigned shortUShort
intInt
unsigned intUInt
longLong
unsigned longULong
floatFloat
doubleDouble

根据上述表格我们已经可以一目了然的看出来 C 中各个基本数据类型会转换为 kotlin 中的何种类型,但是光说不做假把式,我们写一个小 demo 来实际验证一下。

因为我们只需要查看数据类型的映射,所以不需要编写具体的代码实现,直接声明函数就行,因此我们直接修改上一节中的 libtest.h 文件:

char data_char(char a);
unsigned char data_u_char(unsigned char a);
short data_short(short a);
unsigned short data_u_short(unsigned short a);
int data_int(int a);
unsigned int data_u_int(unsigned int a);
long data_l_long(long a);
unsigned long data_u_l_long(unsigned long a);
float data_float(float a);
double data_double(double a);

重新编译后生成对应的 kotlin 函数,查看自动生成的函数实现如下:

@kotlinx.cinterop.internal.CCall public external fun data_char(a: kotlin.Byte): kotlin.Byte { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_double(a: kotlin.Double): kotlin.Double { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_float(a: kotlin.Float): kotlin.Float { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_int(a: kotlin.Int): kotlin.Int { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_l_long(a: kotlin.Long): kotlin.Long { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_short(a: kotlin.Short): kotlin.Short { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_u_char(a: kotlin.UByte): kotlin.UByte { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_u_int(a: kotlin.UInt): kotlin.UInt { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_u_l_long(a: kotlin.ULong): kotlin.ULong { /* compiled code */ }@kotlinx.cinterop.internal.CCall public external fun data_u_short(a: kotlin.UShort): kotlin.UShort { /* compiled code */ }

可以看出,映射关系就是上述表格中的关系。

只是这里需要额外注意的一点是关于字符串的映射关系,在上文中我们提到过,cinterop 只支持 C,而在 C 中是没有字符串这种类型的。

一般来说,在 C 中我们是使用一个字符数组 char string[]char* string 来表示字符串。

那么,C 和 kotlin 又是怎么映射字符串或者说字符数组的呢?

还是一样的,我们直接修改 libtest.h 定义一个函数来看:

char* get_string(char* string);

重新编译后生成的 kotlin 函数如下:

@kotlinx.cinterop.internal.CCall public external fun get_string(string: kotlinx.cinterop.CValuesRef<kotlinx.cinterop.ByteVar /* = kotlinx.cinterop.ByteVarOf<kotlin.Byte> */>?): kotlinx.cinterop.CPointer<kotlinx.cinterop.ByteVar /* = kotlinx.cinterop.ByteVarOf<kotlin.Byte> */>? { /* compiled code */ }

可以看到,该函数的参数值类型为 kotlinx.cinterop.CValuesRef<kotlinx.cinterop.ByteVar /* = kotlinx.cinterop.ByteVarOf<kotlin.Byte> */>?

而返回值为 kotlinx.cinterop.CPointer<kotlinx.cinterop.ByteVar /* = kotlinx.cinterop.ByteVarOf<kotlin.Byte> */>?

这两个类型看起来有点长,好像也不是什么基本数据类型,那么,要怎么使用呢?

其实也很简单,对于参数值的话,我们直接使用字符串,然后用 cinterop 的 cstr 扩展函数转换即可;而返回值的话同理,直接使用扩展函数 toKString() 转为 kotlin 的 string 即可。

对于上面定义的 get_string 函数,我们可以这样用:

println(get_string("bye, monkey fish".cstr)?.toKString())

其他数据映射

首先我们来了解一下对于数组的映射。

这里我们以 int 类型的数组举例,依旧是在 libtest.h 中定义函数如下:

int* int_array(int* ints);

生成的函数如下:


@kotlinx.cinterop.internal.CCall public external fun int_array(ints: kotlinx.cinterop.CValuesRef<kotlinx.cinterop.IntVar /* = kotlinx.cinterop.IntVarOf<kotlin.Int> */>?): kotlinx.cinterop.CPointer<kotlinx.cinterop.IntVar /* = kotlinx.cinterop.IntVarOf<kotlin.Int> */>? { /* compiled code */ }

可以看到参数类型还有返回值和上一节的字符串一样,只是泛型从 Byte 变为了 Int。

是的,这确实是如此,因为上面我们就说过了,在 C 中没有字符串,所谓字符串其实就是字符数组。

那么,即然字符数组有 cstrtoKString() 扩展函数,是不是其他类型也有类似的扩展函数呢?

诶,你猜怎么着,还真有。

例如上面的 int 数组,使用时可以这样:

val newList = int_array(intArrayOf(1, 2, 3).toCValues())
val firstValue = newList!![0]

需要注意的是,如果是 C 中需要的参数是 int 数组,则在 kotlin 中也只能使用 IntArray,然后使用 toCValues() 扩展函数转换。

而返回值 CPointer<IntVar> 其实就可以直接当成一个普通的 Int 数组来使用,在上例中 firstValue 的类型就是 Int 。

关于其他类型的数据映射我们这里就不再赘述,有兴趣的可以自行查阅官方文档:

  1. 结构体和联合体
  2. 函数指针

总结

自此我们已经能够大致了解了如何在 kotlin native 中使用 cinterop 和 C/C++ 交互,虽然我全文举例都只是在 Desktop 平台举例,但是实际上对于同样使用 kotlin native 的 iOS 平台也是一样的用法。

只需要将 def 文件的配置放到 iOS 相关的 gradle 配置下即可,例如:

iosArm64().apply {compilations.getByName("main") {cinterops {val libtest by creating {defFile(project.file("src/nativeInterop/cinterop/libtest.def"))compilerOpts("-Isrc/nativeInterop/cinterop")}}}
}

其余地方和 Desktop 没有任何区别。

下一章我们将介绍如何在 Compose MultiPlatform 中为 Desktop 和 Android 添加 jni 支持。

参考资料

  1. Interoperability with C
  2. Kotlin / Native — How to use C in Kotlin

相关文章:

  • 鸿蒙原生应用/元服务开发-新版本端云一体化模板体验反馈
  • linux远程桌面管理工具(xrdp)、向日葵
  • 排序算法---选择排序
  • 基于ssm高校实验室管理系统的设计与实现论文
  • uniapp移动端悬浮按钮(吸附边缘)
  • 【rabbitMQ】模拟work queue,实现单个队列绑定多个消费者
  • gittee使用教学
  • 基于Solr的全文检索系统的实现与应用
  • 华为OD机试 - 部门人力分配(Java JS Python C)
  • FFmpeg抽取视频h264数据重定向
  • JAVA网络编程——BIO、NIO、AIO深度解析
  • Go Fyne 入门
  • docker-compose安装教程
  • 51单片机LED与无源蜂鸣器模块
  • Python高级算法——动态规划
  • [ JavaScript ] 数据结构与算法 —— 链表
  • canvas绘制圆角头像
  • conda常用的命令
  • Puppeteer:浏览器控制器
  • Vue2.x学习三:事件处理生命周期钩子
  • 成为一名优秀的Developer的书单
  • 分享几个不错的工具
  • 基于Mobx的多页面小程序的全局共享状态管理实践
  • 解决jsp引用其他项目时出现的 cannot be resolved to a type错误
  • 王永庆:技术创新改变教育未来
  • 一个6年java程序员的工作感悟,写给还在迷茫的你
  • ​决定德拉瓦州地区版图的关键历史事件
  • #define与typedef区别
  • #if 1...#endif
  • $.ajax()
  • (09)Hive——CTE 公共表达式
  • (1)SpringCloud 整合Python
  • (android 地图实战开发)3 在地图上显示当前位置和自定义银行位置
  • (Windows环境)FFMPEG编译,包含编译x264以及x265
  • (免费分享)基于springboot,vue疗养中心管理系统
  • (区间dp) (经典例题) 石子合并
  • (三) diretfbrc详解
  • (十一)手动添加用户和文件的特殊权限
  • (转)http-server应用
  • (转)关于多人操作数据的处理策略
  • *(长期更新)软考网络工程师学习笔记——Section 22 无线局域网
  • .equals()到底是什么意思?
  • .NET/C# 使窗口永不激活(No Activate 永不获得焦点)
  • .NET国产化改造探索(三)、银河麒麟安装.NET 8环境
  • .NET使用HttpClient以multipart/form-data形式post上传文件及其相关参数
  • .NET中两种OCR方式对比
  • .secret勒索病毒数据恢复|金蝶、用友、管家婆、OA、速达、ERP等软件数据库恢复
  • ?.的用法
  • @FeignClient 调用另一个服务的test环境,实际上却调用了另一个环境testone的接口,这其中牵扯到k8s容器外容器内的问题,注册到eureka上的是容器外的旧版本...
  • @JsonFormat与@DateTimeFormat注解的使用
  • @reference注解_Dubbo配置参考手册之dubbo:reference
  • [ vulhub漏洞复现篇 ] JBOSS AS 4.x以下反序列化远程代码执行漏洞CVE-2017-7504
  • [2016.7 Day.4] T1 游戏 [正解:二分图 偏解:奇葩贪心+模拟?(不知如何称呼不过居然比std还快)]
  • [ACTF2020 新生赛]Include
  • [ASP.NET MVC]如何定制Numeric属性/字段验证消息