当前位置: 首页 > news >正文

计算机网络重要知识点

OSI 七层模型 是国际标准化组织提出的一个网络分层模型。

TCP/IP 四层模型 是目前被广泛采用的一种模型,我们可以将 TCP / IP 模型看作是 OSI 七层模型的精简版本,由以下 4 层组成:

  1. 应用层
  2. 传输层
  3. 网络层
  4. 网络接口层

复杂的系统需要分层,因为每一层都需要专注于一类事情。网络分层的原因也是一样,每一层只专注于做一类事情。

  • 各层之间相互独立:各层之间相互独立,各层之间不需要关心其他层是如何实现的,只需要知道自己如何调用下层提供好的功能就可以了(可以简单理解为接口调用)。这个和我们对开发时系统进行分层是一个道理。
  • 提高了灵活性和可替换性:每一层都可以使用最适合的技术来实现,你只需要保证你提供的功能以及暴露的接口的规则没有改变就行了。并且,每一层都可以根据需要进行修改或替换,而不会影响到整个网络的结构。这个和我们平时开发系统的时候要求的高内聚、低耦合的原则也是可以对应上的。
  • 大问题化小:分层可以将复杂的网络问题分解为许多比较小的、界线比较清晰简单的小问题来处理和解决。这样使得复杂的计算机网络系统变得易于设计,实现和标准化。 这个和我们平时开发的时候,一般会将系统功能分解,然后将复杂的问题分解为容易理解的更小的问题是相对应的,这些较小的问题具有更好的边界(目标和接口)定义。

应用层协议

  • HTTP(Hypertext Transfer Protocol,超文本传输协议):基于 TCP 协议,是一种用于传输超文本和多媒体内容的协议,主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。
  • SMTP(Simple Mail Transfer Protocol,简单邮件发送协议):基于 TCP 协议,是一种用于发送电子邮件的协议。注意 ⚠️:SMTP 协议只负责邮件的发送,而不是接收。要从邮件服务器接收邮件,需要使用 POP3 或 IMAP 协议。
  • POP3/IMAP(邮件接收协议):基于 TCP 协议,两者都是负责邮件接收的协议。IMAP 协议是比 POP3 更新的协议,它在功能和性能上都更加强大。IMAP 支持邮件搜索、标记、分类、归档等高级功能,而且可以在多个设备之间同步邮件状态。几乎所有现代电子邮件客户端和服务器都支持 IMAP。
  • FTP(File Transfer Protocol,文件传输协议) : 基于 TCP 协议,是一种用于在计算机之间传输文件的协议,可以屏蔽操作系统和文件存储方式。注意 ⚠️:FTP 是一种不安全的协议,因为它在传输过程中不会对数据进行加密。建议在传输敏感数据时使用更安全的协议,如 SFTP。
  • Telnet(远程登陆协议):基于 TCP 协议,用于通过一个终端登陆到其他服务器。Telnet 协议的最大缺点之一是所有数据(包括用户名和密码)均以明文形式发送,这有潜在的安全风险。这就是为什么如今很少使用 Telnet,而是使用一种称为 SSH 的非常安全的网络传输协议的主要原因。
  • SSH(Secure Shell Protocol,安全的网络传输协议):基于 TCP 协议,通过加密和认证机制实现安全的访问和文件传输等业务
  • RTP(Real-time Transport Protocol,实时传输协议):通常基于 UDP 协议,但也支持 TCP 协议。它提供了端到端的实时传输数据的功能,但不包含资源预留存、不保证实时传输质量,这些功能由 WebRTC 实现。
  • DNS(Domain Name System,域名管理系统): 基于 UDP 协议,用于解决域名和 IP 地址的映射问题。

传输层协议

  • TCP(Transmission Control Protocol,传输控制协议 ):提供 面向连接 的,可靠 的数据传输服务。
  • UDP(User Datagram Protocol,用户数据协议):提供 无连接 的,尽最大努力 的数据传输服务(不保证数据传输的可靠性),简单高效。

网络层协议

  • IP(Internet Protocol,网际协议):TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。目前 IP 协议主要分为两种,一种是过去的 IPv4,另一种是较新的 IPv6,目前这两种协议都在使用,但后者已经被提议来取代前者。
  • ARP(Address Resolution Protocol,地址解析协议):ARP 协议解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。
  • ICMP(Internet Control Message Protocol,互联网控制报文协议):一种用于传输网络状态和错误消息的协议,常用于网络诊断和故障排除。例如,Ping 工具就使用了 ICMP 协议来测试网络连通性。
  • NAT(Network Address Translation,网络地址转换协议):NAT 协议的应用场景如同它的名称——网络地址转换,应用于内部网到外部网的地址转换过程中。具体地说,在一个小的子网(局域网,LAN)内,各主机使用的是同一个 LAN 下的 IP 地址,但在该 LAN 以外,在广域网(WAN)中,需要一个统一的 IP 地址来标识该 LAN 在整个 Internet 上的位置。
  • OSPF(Open Shortest Path First,开放式最短路径优先) ):一种内部网关协议(Interior Gateway Protocol,IGP),也是广泛使用的一种动态路由协议,基于链路状态算法,考虑了链路的带宽、延迟等因素来选择最佳路径。
  • RIP(Routing Information Protocol,路由信息协议):一种内部网关协议(Interior Gateway Protocol,IGP),也是一种动态路由协议,基于距离向量算法,使用固定的跳数作为度量标准,选择跳数最少的路径作为最佳路径。
  • BGP(Border Gateway Protocol,边界网关协议):一种用来在路由选择域之间交换网络层可达性信息(Network Layer Reachability Information,NLRI)的路由选择协议,具有高度的灵活性和可扩展性。

HTTP

从输入URL到页面展示

  1. 在浏览器中输入指定网页的 URL。
  2. 浏览器通过 DNS 协议,获取域名对应的 IP 地址。
  3. 浏览器根据 IP 地址和端口号,向目标服务器发起一个 TCP 连接请求。
  4. 浏览器在 TCP 连接上,向服务器发送一个 HTTP 请求报文,请求获取网页的内容。
  5. 服务器收到 HTTP 请求报文后,处理请求,并返回 HTTP 响应报文给浏览器。
  6. 浏览器收到 HTTP 响应报文后,解析响应体中的 HTML 代码,渲染网页的结构和样式,同时根据 HTML 中的其他资源的 URL(如图片、CSS、JS 等),再次发起 HTTP 请求,获取这些资源的内容,直到网页完全加载显示。
  7. 浏览器在不需要和服务器通信时,可以主动关闭 TCP 连接,或者等待服务器的关闭请求。

HTTP 和与HTTPS

  • 端口号:HTTP 默认是 80,HTTPS 默认是 443。
  • URL 前缀:HTTP 的 URL 前缀是 http://,HTTPS 的 URL 前缀是 https://
  • 安全性和资源消耗:HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。HTTPS 是运行在 SSL/TLS 之上的 HTTP 协议,SSL/TLS 运行在 TCP 之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。所以说,HTTP 安全性没有 HTTPS 高,但是 HTTPS 比 HTTP 耗费更多服务器资源。
  • SEO(搜索引擎优化):搜索引擎通常会更青睐使用 HTTPS 协议的网站,因为 HTTPS 能够提供更高的安全性和用户隐私保护。使用 HTTPS 协议的网站在搜索结果中可能会被优先显示,从而对 SEO 产生影响。

URI与URL

  • URI(Uniform Resource Identifier) 是统一资源标志符,可以唯一标识一个资源。
  • URL(Uniform Resource Locator) 是统一资源定位符,可以提供该资源的路径。它是一种具体的 URI,即 URL 可以用来标识一个资源,而且还指明了如何 locate 这个资源。

URI 的作用像身份证号一样,URL 的作用更像家庭住址一样。URL 是一种具体的 URI,它不仅唯一标识资源,而且还提供了定位该资源的信息。

GET 与POST

  • 语义(主要区别):GET 通常用于获取或查询资源,而 POST 通常用于创建或修改资源。
  • 幂等:GET 请求是幂等的,即多次重复执行不会改变资源的状态,而 POST 请求是不幂等的,即每次执行可能会产生不同的结果或影响资源的状态。
  • 格式:GET 请求的参数通常放在 URL 中,形成查询字符串(querystring),而 POST 请求的参数通常放在请求体(body)中,可以有多种编码格式,如 application/x-www-form-urlencoded、multipart/form-data、application/json 等。GET 请求的 URL 长度受到浏览器和服务器的限制,而 POST 请求的 body 大小则没有明确的限制。不过,实际上 GET 请求也可以用 body 传输数据,只是并不推荐这样做,因为这样可能会导致一些兼容性或者语义上的问题。
  • 缓存:由于 GET 请求是幂等的,它可以被浏览器或其他中间节点(如代理、网关)缓存起来,以提高性能和效率。而 POST 请求则不适合被缓存,因为它可能有副作用,每次执行可能需要实时的响应。
  • 安全性:GET 请求和 POST 请求如果使用 HTTP 协议的话,那都不安全,因为 HTTP 协议本身是明文传输的,必须使用 HTTPS 协议来加密传输数据。另外,GET 请求相比 POST 请求更容易泄露敏感数据,因为 GET 请求的参数通常放在 URL 中。

WebSocket

WebSocket 是一种基于 TCP 连接的全双工通信协议,即客户端和服务器可以同时发送和接收数据。

WebSocket 协议本质上是应用层的协议,用于弥补 HTTP 协议在持久通信能力上的不足。客户端和服务器仅需一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。

下面是 WebSocket 的常见应用场景:

  • 视频弹幕
  • 实时消息推送
  • 实时游戏对战
  • 多用户协同编辑
  • 社交聊天

WebSocket 和与HTTP

WebSocket 和 HTTP 两者都是基于 TCP 的应用层协议,都可以在网络中传输数据。

下面是二者的主要区别:

  • WebSocket 是一种双向实时通信协议,而 HTTP 是一种单向通信协议。并且,HTTP 协议下的通信只能由客户端发起,服务器无法主动通知客户端。
  • WebSocket 使用 ws:// 或 wss://(使用 SSL/TLS 加密后的协议,类似于 HTTP 和 HTTPS 的关系) 作为协议前缀,HTTP 使用 http:// 或 https:// 作为协议前缀。
  • WebSocket 可以支持扩展,用户可以扩展协议,实现部分自定义的子协议,如支持压缩、加密等。
  • WebSocket 通信数据格式比较轻量,用于协议控制的数据包头部相对较小,网络开销小,而 HTTP 通信每次都要携带完整的头部,网络开销较大(HTTP/2.0 使用二进制帧进行数据传输,还支持头部压缩,减少了网络开销)。

SSE 与 WebSocket

SSE 与 WebSocket 作用相似,都可以建立服务端与浏览器之间的通信,实现服务端向客户端推送消息,但还是有些许不同:

  • SSE 是基于 HTTP 协议的,它们不需要特殊的协议或服务器实现即可工作;WebSocket 需单独服务器来处理协议。
  • SSE 单向通信,只能由服务端向客户端单向通信;WebSocket 全双工通信,即通信的双方可以同时发送和接受信息。
  • SSE 实现简单开发成本低,无需引入其他组件;WebSocket 传输数据需做二次解析,开发门槛高一些。
  • SSE 默认支持断线重连;WebSocket 则需要自己实现。
  • SSE 只能传送文本消息,二进制数据需要经过编码后传送;WebSocket 默认支持传送二进制数据。

SSE 好像一直不被大家所熟知,一部分原因是出现了 WebSocket,这个提供了更丰富的协议来执行双向、全双工通信。对于游戏、即时通信以及需要双向近乎实时更新的场景,拥有双向通道更具吸引力。

但是,在某些情况下,不需要从客户端发送数据。而你只需要一些服务器操作的更新。比如:站内信、未读消息数、状态更新、股票行情、监控数量等场景,SEE 不管是从实现的难易和成本上都更加有优势。此外,SSE 具有 WebSocket 在设计上缺乏的多种功能,例如:自动重新连接、事件 ID 和发送任意事件的能力。

TCP与UDP

  • 是否面向连接:UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。
  • 是否是可靠传输:远地主机在收到 UDP 报文后,不需要给出任何确认,并且不保证数据不丢失,不保证是否顺序到达。TCP 提供可靠的传输服务,TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制。通过 TCP 连接传输的数据,无差错、不丢失、不重复、并且按序到达。
  • 是否有状态:这个和上面的“是否可靠传输”相对应。TCP 传输是有状态的,这个有状态说的是 TCP 会去记录自己发送消息的状态比如消息是否发送了、是否被接收了等等。为此 ,TCP 需要维持复杂的连接状态表。而 UDP 是无状态服务,简单来说就是不管发出去之后的事情了
  • 传输效率:由于使用 TCP 进行传输的时候多了连接、确认、重传等机制,所以 TCP 的传输效率要比 UDP 低很多。
  • 传输形式:TCP 是面向字节流的,UDP 是面向报文的。
  • 首部开销:TCP 首部开销(20 ~ 60 字节)比 UDP 首部开销(8 字节)要大。
  • 是否提供广播或多播服务:TCP 只支持点对点通信,UDP 支持一对一、一对多、多对一、多对多;

UDP 一般用于即时通信,比如:语音、 视频、直播等等。这些场景对传输数据的准确性要求不是特别高,比如你看视频即使少个一两帧,实际给人的感觉区别也不大。

TCP 用于对传输准确性要求特别高的场景,比如文件传输、发送和接收邮件、远程登录等等。

运行于 TCP 协议之上的协议

HTTP 协议(HTTP/3.0 之前)、

HTTPS 协议、FTP 协议、SMTP 协议、POP3/IMAP 协议、Telnet 协议、SSH 协议

运行于 UDP 协议之上的协议

HTTP 协议(HTTP/3.0 )、DNS

DHCP 协议:动态主机配置协议,动态配置 IP 地址

TCP三次握手四次挥手

建立一个 TCP 连接需要“三次握手”,缺一不可:

  • 一次握手:客户端发送带有 SYN(SEQ=x) 标志的数据包 -> 服务端,然后客户端进入 SYN_SEND 状态,等待服务端的确认;
  • 二次握手:服务端发送带有 SYN+ACK(SEQ=y,ACK=x+1) 标志的数据包 –> 客户端,然后服务端进入 SYN_RECV 状态;
  • 三次握手:客户端发送带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务端都进入ESTABLISHED 状态,完成 TCP 三次握手。

当建立了 3 次握手之后,客户端和服务端就可以传输数据啦!

断开一个 TCP 连接则需要“四次挥手”,缺一不可:

  1. 第一次挥手:客户端发送一个 FIN(SEQ=x) 标志的数据包->服务端,用来关闭客户端到服务端的数据传送。然后客户端进入 FIN-WAIT-1 状态。
  2. 第二次挥手:服务端收到这个 FIN(SEQ=X) 标志的数据包,它发送一个 ACK (ACK=x+1)标志的数据包->客户端 。然后服务端进入 CLOSE-WAIT 状态,客户端进入 FIN-WAIT-2 状态。
  3. 第三次挥手:服务端发送一个 FIN (SEQ=y)标志的数据包->客户端,请求关闭连接,然后服务端进入 LAST-ACK 状态。
  4. 第四次挥手:客户端发送 ACK (ACK=y+1)标志的数据包->服务端,然后客户端进入TIME-WAIT状态,服务端在收到 ACK (ACK=y+1)标志的数据包后进入 CLOSE 状态。此时如果客户端等待 2MSL 后依然没有收到回复,就证明服务端已正常关闭,随后客户端也可以关闭连接了。

只要四次挥手没有结束,客户端和服务端就可以继续传输数据。

TCP保证传输可靠

  • 基于数据块传输:应用数据被分割成 TCP 认为最适合发送的数据块,再传输给网络层,数据块被称为报文段或段。
  • 对失序数据包重新排序以及去重:TCP 为了保证不发生丢包,就给每个包一个序列号,有了序列号能够将接收到的数据根据序列号排序,并且去掉重复序列号的数据就可以实现数据包去重。
  • 校验和 : TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
  • 重传机制 : 在数据包丢失或延迟的情况下,重新发送数据包,直到收到对方的确认应答(ACK)。TCP 重传机制主要有:基于计时器的重传(也就是超时重传)、快速重传(基于接收端的反馈信息来引发重传)、SACK(在快速重传的基础上,返回最近收到的报文段的序列号范围,这样客户端就知道,哪些数据包已经到达服务器了)、D-SACK(重复 SACK,在 SACK 的基础上,额外携带信息,告知发送方有哪些数据包自己重复接收了)。
  • 流量控制 : TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议(TCP 利用滑动窗口实现流量控制)。
  • 拥塞控制 : 当网络拥塞时,减少数据的发送。TCP 在发送数据的时候,需要考虑两个因素:一是接收方的接收能力,二是网络的拥塞程度。接收方的接收能力由滑动窗口表示,表示接收方还有多少缓冲区可以用来接收数据

TCP流量控制

TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

接收窗口的大小是根据接收端处理数据的速度动态调整的。

TCP 的拥塞控制

TCP 的拥塞控制采用了四种算法,即 慢开始拥塞避免快重传快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。

  • 慢开始: 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd 初始值为 1,每经过一个传播轮次,cwnd 加倍。
  • 拥塞避免: 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送方的 cwnd 加 1.
  • 快重传与快恢复: 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。

IP

IP(Internet Protocol,网际协议) 是 TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。

每个连入互联网的设备或域(如计算机、服务器、路由器等)都被分配一个 IP 地址(Internet Protocol address),作为唯一标识符。每个 IP 地址都是一个字符序列,如 192.168.1.1(IPv4)、2001:0db8:85a3:0000:0000:8a2e:0370:7334(IPv6) 。

当网络设备发送 IP 数据包时,数据包中包含了 源 IP 地址目的 IP 地址 。源 IP 地址用于标识数据包的发送方设备或域,而目的 IP 地址则用于标识数据包的接收方设备或域。

NAT

NAT(Network Address Translation,网络地址转换) 主要用于在不同网络之间转换 IP 地址。它允许将私有 IP 地址(如在局域网中使用的 IP 地址)映射为公有 IP 地址(在互联网中使用的 IP 地址)或者反向映射,从而实现局域网内的多个设备通过单一公有 IP 地址访问互联网。

NAT 不光可以缓解 IPv4 地址资源短缺的问题,还可以隐藏内部网络的实际拓扑结构,使得外部网络无法直接访问内部网络中的设备,从而提高了内部网络的安全性。

MAC地址

MAC 地址的全称是 媒体访问控制地址(Media Access Control Address)。如果说,互联网中每一个资源都由 IP 地址唯一标识(IP 协议内容),那么一切网络设备都由 MAC 地址唯一标识。

MAC 地址具有可携带性、永久性,身份证号永久地标识一个人的身份,不论他到哪里都不会改变。而 IP 地址不具有这些性质,当一台设备更换了网络,它的 IP 地址也就可能发生改变,也就是它在互联网中的定位发生了变化。

MAC 地址有一个特殊地址:FF-FF-FF-FF-FF-FF(全 1 地址),该地址表示广播地址。

ARP 协议

ARP 协议,全称 地址解析协议(Address Resolution Protocol),它解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。

  1. ARP 协议在协议栈中的位置? ARP 协议在协议栈中的位置非常重要,在理解了它的工作原理之后,也很难说它到底是网络层协议,还是链路层协议,因为它恰恰串联起了网络层和链路层。国外的大部分教程通常将 ARP 协议放在网络层。
  2. ARP 协议解决了什么问题,地位如何? ARP 协议,全称 地址解析协议(Address Resolution Protocol),它解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。
  3. ARP 工作原理? 记住几个关键词:ARP 表、广播问询、单播响应

 

 

相关文章:

  • [Shell编程学习路线]——探讨Shell中变量的作用范围(export)
  • vscode软件上安装 Fitten Code插件及使用
  • 用Python处理Excel的资源
  • 4、视觉里程计:特征点法、直接法和半直接法
  • C++日期类的实现
  • 记一次 .NET某工控视觉自动化系统 卡死分析
  • 简单聊一下Oracle,MySQL,postgresql三种锁表的机制,行锁和表锁
  • python爬虫:实现动态网页的爬取,以爬取视频为例
  • 【C++进阶学习】第一弹——继承(上)——探索代码复用的乐趣
  • 6.14作业
  • 【Ardiuno】实验ESP32单片机自动配置Wifi功能(图文)
  • Solr7.4.0报错org.apache.solr.common.SolrException
  • 3、matlab单目相机标定原理、流程及实验
  • Linux2(文件类型分类 基本命令2 重定向)
  • 英伟达算法岗面试,问的贼专业。。。
  • hexo+github搭建个人博客
  • 【刷算法】求1+2+3+...+n
  • axios 和 cookie 的那些事
  • Create React App 使用
  • iOS高仿微信项目、阴影圆角渐变色效果、卡片动画、波浪动画、路由框架等源码...
  • Javascript 原型链
  • mockjs让前端开发独立于后端
  • Mybatis初体验
  • MySQL Access denied for user 'root'@'localhost' 解决方法
  • Nacos系列:Nacos的Java SDK使用
  • vue脚手架vue-cli
  • XForms - 更强大的Form
  • 百度贴吧爬虫node+vue baidu_tieba_crawler
  • 分享一个自己写的基于canvas的原生js图片爆炸插件
  • 面试遇到的一些题
  • 入口文件开始,分析Vue源码实现
  • 仓管云——企业云erp功能有哪些?
  • #HarmonyOS:软件安装window和mac预览Hello World
  • #WEB前端(HTML属性)
  • #我与Java虚拟机的故事#连载06:收获颇多的经典之作
  • #在 README.md 中生成项目目录结构
  • $(this) 和 this 关键字在 jQuery 中有何不同?
  • (ctrl.obj) : error LNK2038: 检测到“RuntimeLibrary”的不匹配项: 值“MDd_DynamicDebug”不匹配值“
  • (STM32笔记)九、RCC时钟树与时钟 第二部分
  • (定时器/计数器)中断系统(详解与使用)
  • (简单) HDU 2612 Find a way,BFS。
  • (译)计算距离、方位和更多经纬度之间的点
  • **CI中自动类加载的用法总结
  • .bat批处理(三):变量声明、设置、拼接、截取
  • .mysql secret在哪_MYSQL基本操作(上)
  • .NET CORE 2.0发布后没有 VIEWS视图页面文件
  • .NET delegate 委托 、 Event 事件,接口回调
  • .NET 发展历程
  • .NET 线程 Thread 进程 Process、线程池 pool、Invoke、begininvoke、异步回调
  • .NET/C#⾯试题汇总系列:集合、异常、泛型、LINQ、委托、EF!(完整版)
  • :如何用SQL脚本保存存储过程返回的结果集
  • [ C++ ] STL---string类的模拟实现
  • [AHK] WinHttpRequest.5.1报错 0x80092004 找不到对象或属性
  • [BZOJ 1040] 骑士
  • [C#]winform部署yolov5-onnx模型