当前位置: 首页 > news >正文

STM32基于DMA数据转运和AD多通道

文章目录

1. DMA数据转运

1.1 初始化DMA步骤

1.2 DMA的库函数

1.3 设置当前数据寄存器

1.4 DMA获取当前数据寄存器

2. DMA数据转运

2.1 DMA.C

2.2 DMA.H

2.3 MAIN.C

3. DMA+AD多通道

3.1 AD.C

3.2 AD.H

3.3 MAIN.C


1. DMA数据转运

对于DMA的详细解析可以看下面这篇文章

STM32单片机DMA存储器详解-CSDN博客

1.1 初始化DMA步骤

第一步,RCC开启DMA的时钟, AHB总线的设备

第二步,直接调用DMA_Init,初始化配置的参数,包括外设和存储器站点的起始地址、数据宽度、地址是否自增、方向、传输计数器、是否需要自动重装、选择触发源、通道优先级

第三步,DMA_Cmd给指定通道使能,如果使用的是硬件触发,要在对应外设调用XXX_DMACmd,开启一下触发信号的输出,需要DMA的中断,就调用DMA_ITConfig,开启中断输出,再在NVIC中配置相应的中断通道,然后写中断函数就行了,如果传输计数器清0,再想给传输计数器赋值,就DMA失能、写传输计数器、DMA使能,就可以了

1.2 DMA的库函数

在stm32f10x_dma.h文件中可以找到对应的库函数。

恢复缺省配置
void DMA_DeInit(DMA_Channel_TypeDef* DMAy_Channelx);
初始化
void DMA_Init(DMA_Channel_TypeDef* DMAy_Channelx, DMA_InitTypeDef*DMA_InitStruct);
结构体初始化
void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct);
使能
void DMA_Cmd(DMA_Channel_TypeDef* DMAy_Channelx, FunctionalState NewState);
中断输出使能
void DMA_ITConfig(DMA_Channel_TypeDef* DMAy_Channelx, uint32_t DMA_IT, FunctionalState NewState);

1.3 设置当前数据寄存器

给传输计数器写数据的

void DMA_SetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx,
uint16_t DataNumber);

 

1.4 DMA获取当前数据寄存器

返回传输计数器的值
uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx);

获取标志位状态

FlagStatus DMA_GetFlagStatus(uint32_t DMAy_FLAG);

清除标志位状态

void DMA_ClearFlag(uint32_t DMAy_FLAG);

获取中断状态

ITStatus DMA_GetITStatus(uint32_t DMAy_IT);

清除中断挂起位

void DMA_ClearITPendingBit(uint32_t DMAy_IT);

2. DMA数据转运

这个代码实现了DMA数据转运,将DATA A的数据转运给data B。

2.1 DMA.C

#include "stm32f10x.h"                  // Device headeruint16_t MyDMA_Size;					//定义全局变量,用于记住Init函数的Size,供Transfer函数使用//DMA初始化void MyDMA_Init(uint32_t AddrA, uint32_t AddrB, uint16_t Size)
{MyDMA_Size = Size;					//将Size写入到全局变量,记住参数Size/*开启时钟*/RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);						//开启DMA的时钟/*DMA初始化*/DMA_InitTypeDef DMA_InitStructure;										//定义结构体变量DMA_InitStructure.DMA_PeripheralBaseAddr = AddrA;						//外设基地址,给定形参AddrADMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;	//外设数据宽度,选择字节DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable;			//外设地址自增,选择使能DMA_InitStructure.DMA_MemoryBaseAddr = AddrB;							//存储器基地址,给定形参AddrBDMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;			//存储器数据宽度,选择字节DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;					//存储器地址自增,选择使能DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;						//数据传输方向,选择由外设到存储器DMA_InitStructure.DMA_BufferSize = Size;								//转运的数据大小(转运次数)DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;							//模式,选择正常模式DMA_InitStructure.DMA_M2M = DMA_M2M_Enable;								//存储器到存储器,选择使能DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;					//优先级,选择中等DMA_Init(DMA1_Channel1, &DMA_InitStructure);							//将结构体变量交给DMA_Init,配置DMA1的通道1/*DMA使能*/DMA_Cmd(DMA1_Channel1, DISABLE);	//这里先不给使能,初始化后不会立刻工作,等后续调用Transfer后,再开始
}//启动DMA数据转运void MyDMA_Transfer(void)
{DMA_Cmd(DMA1_Channel1, DISABLE);					//DMA失能,在写入传输计数器之前,需要DMA暂停工作DMA_SetCurrDataCounter(DMA1_Channel1, MyDMA_Size);	//写入传输计数器,指定将要转运的次数DMA_Cmd(DMA1_Channel1, ENABLE);						//DMA使能,开始工作while (DMA_GetFlagStatus(DMA1_FLAG_TC1) == RESET);	//等待DMA工作完成DMA_ClearFlag(DMA1_FLAG_TC1);						//清除工作完成标志位
}

 

2.2 DMA.H

#ifndef __MYDMA_H
#define __MYDMA_Hvoid MyDMA_Init(uint32_t AddrA, uint32_t AddrB, uint16_t Size);
void MyDMA_Transfer(void);#endif

 

2.3 MAIN.C

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyDMA.h"uint8_t DataA[] = {0x01, 0x02, 0x03, 0x04};				//定义测试数组DataA,为数据源
uint8_t DataB[] = {0, 0, 0, 0};							//定义测试数组DataB,为数据目的地int main(void)
{/*模块初始化*/OLED_Init();				//OLED初始化MyDMA_Init((uint32_t)DataA, (uint32_t)DataB, 4);	//DMA初始化,把源数组和目的数组的地址传入/*显示静态字符串*/OLED_ShowString(1, 1, "DataA");OLED_ShowString(3, 1, "DataB");/*显示数组的首地址*/OLED_ShowHexNum(1, 8, (uint32_t)DataA, 8);OLED_ShowHexNum(3, 8, (uint32_t)DataB, 8);while (1){DataA[0] ++;		//变换测试数据DataA[1] ++;DataA[2] ++;DataA[3] ++;OLED_ShowHexNum(2, 1, DataA[0], 2);		//显示数组DataAOLED_ShowHexNum(2, 4, DataA[1], 2);OLED_ShowHexNum(2, 7, DataA[2], 2);OLED_ShowHexNum(2, 10, DataA[3], 2);OLED_ShowHexNum(4, 1, DataB[0], 2);		//显示数组DataBOLED_ShowHexNum(4, 4, DataB[1], 2);OLED_ShowHexNum(4, 7, DataB[2], 2);OLED_ShowHexNum(4, 10, DataB[3], 2);Delay_ms(1000);		//延时1s,观察转运前的现象MyDMA_Transfer();	//使用DMA转运数组,从DataA转运到DataBOLED_ShowHexNum(2, 1, DataA[0], 2);		//显示数组DataAOLED_ShowHexNum(2, 4, DataA[1], 2);OLED_ShowHexNum(2, 7, DataA[2], 2);OLED_ShowHexNum(2, 10, DataA[3], 2);OLED_ShowHexNum(4, 1, DataB[0], 2);		//显示数组DataBOLED_ShowHexNum(4, 4, DataB[1], 2);OLED_ShowHexNum(4, 7, DataB[2], 2);OLED_ShowHexNum(4, 10, DataB[3], 2);Delay_ms(1000);		//延时1s,观察转运后的现象}
}

3. DMA+AD多通道

这个代码实现了ADC检测多通道数据,然后再进行DMA转运。

3.1 AD.C

#include "stm32f10x.h"                  // Device headeruint16_t AD_Value[4];					//定义用于存放AD转换结果的全局数组/]AD初始化void AD_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);		//开启DMA1的时钟/*设置ADC时钟*/RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0、PA1、PA2和PA3引脚初始化为模拟输入/*规则组通道配置*/ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);	//规则组序列1的位置,配置为通道0ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5);	//规则组序列2的位置,配置为通道1ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5);	//规则组序列3的位置,配置为通道2ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_55Cycles5);	//规则组序列4的位置,配置为通道3/*ADC初始化*/ADC_InitTypeDef ADC_InitStructure;											//定义结构体变量ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;							//模式,选择独立模式,即单独使用ADC1ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;						//数据对齐,选择右对齐ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;			//外部触发,使用软件触发,不需要外部触发ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;							//连续转换,使能,每转换一次规则组序列后立刻开始下一次转换ADC_InitStructure.ADC_ScanConvMode = ENABLE;								//扫描模式,使能,扫描规则组的序列,扫描数量由ADC_NbrOfChannel确定ADC_InitStructure.ADC_NbrOfChannel = 4;										//通道数,为4,扫描规则组的前4个通道ADC_Init(ADC1, &ADC_InitStructure);											//将结构体变量交给ADC_Init,配置ADC1/*DMA初始化*/DMA_InitTypeDef DMA_InitStructure;											//定义结构体变量DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;				//外设基地址,给定形参AddrADMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;	//外设数据宽度,选择半字,对应16为的ADC数据寄存器DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;			//外设地址自增,选择失能,始终以ADC数据寄存器为源DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)AD_Value;					//存储器基地址,给定存放AD转换结果的全局数组AD_ValueDMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;			//存储器数据宽度,选择半字,与源数据宽度对应DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;						//存储器地址自增,选择使能,每次转运后,数组移到下一个位置DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;							//数据传输方向,选择由外设到存储器,ADC数据寄存器转到数组DMA_InitStructure.DMA_BufferSize = 4;										//转运的数据大小(转运次数),与ADC通道数一致DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;								//模式,选择循环模式,与ADC的连续转换一致DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;								//存储器到存储器,选择失能,数据由ADC外设触发转运到存储器DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;						//优先级,选择中等DMA_Init(DMA1_Channel1, &DMA_InitStructure);								//将结构体变量交给DMA_Init,配置DMA1的通道1/*DMA和ADC使能*/DMA_Cmd(DMA1_Channel1, ENABLE);							//DMA1的通道1使能ADC_DMACmd(ADC1, ENABLE);								//ADC1触发DMA1的信号使能ADC_Cmd(ADC1, ENABLE);									//ADC1使能/*ADC校准*/ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准while (ADC_GetResetCalibrationStatus(ADC1) == SET);ADC_StartCalibration(ADC1);while (ADC_GetCalibrationStatus(ADC1) == SET);/*ADC触发*/ADC_SoftwareStartConvCmd(ADC1, ENABLE);	//软件触发ADC开始工作,由于ADC处于连续转换模式,故触发一次后ADC就可以一直连续不断地工作
}

3.2 AD.H

#ifndef __AD_H
#define __AD_Hextern uint16_t AD_Value[4];void AD_Init(void);#endif

3.3 MAIN.C

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"int main(void)
{/*模块初始化*/OLED_Init();				//OLED初始化AD_Init();					//AD初始化/*显示静态字符串*/OLED_ShowString(1, 1, "AD0:");OLED_ShowString(2, 1, "AD1:");OLED_ShowString(3, 1, "AD2:");OLED_ShowString(4, 1, "AD3:");while (1){OLED_ShowNum(1, 5, AD_Value[0], 4);		//显示转换结果第0个数据OLED_ShowNum(2, 5, AD_Value[1], 4);		//显示转换结果第1个数据OLED_ShowNum(3, 5, AD_Value[2], 4);		//显示转换结果第2个数据OLED_ShowNum(4, 5, AD_Value[3], 4);		//显示转换结果第3个数据Delay_ms(100);							//延时100ms,手动增加一些转换的间隔时间}
}

相关文章:

  • js下拉框选择筛选数据数据联动
  • c++ 智能指针使用注意事项及解决方案
  • 华为中小企业组网
  • Ai绘画行业又叒翻天了!Stable Diffusion 3.0开源!多图实测附安装包!
  • arsetryhtehrwgefwadasdadasd
  • 算法题解记录29+++全排列(百日筑基)
  • 学习笔记——路由网络基础——路由优先级(preference)
  • Docker从容器打包镜像到本地保存与加载
  • SpringTask-Timer实现定时任务
  • 使用 C# 进行面向对象编程:第 10 部分
  • 嵌入式中间件_1.嵌入式中间件的定义及特点
  • 机器学习python实践——数据“相关性“的一些补充性个人思考
  • NettyのEventLoopChannel
  • 超高清图像生成新SOTA!清华唐杰教授团队提出Inf-DiT:生成4096图像比UNet节省5倍内存。
  • 银行数仓项目实战(一)--什么是数据仓库
  • ABAP的include关键字,Java的import, C的include和C4C ABSL 的import比较
  • Android 架构优化~MVP 架构改造
  • ComponentOne 2017 V2版本正式发布
  •  D - 粉碎叛乱F - 其他起义
  • download使用浅析
  • ES6简单总结(搭配简单的讲解和小案例)
  • iBatis和MyBatis在使用ResultMap对应关系时的区别
  • java小心机(3)| 浅析finalize()
  • leetcode-27. Remove Element
  • Linux编程学习笔记 | Linux IO学习[1] - 文件IO
  • Python_OOP
  • SQLServer之索引简介
  • Synchronized 关键字使用、底层原理、JDK1.6 之后的底层优化以及 和ReenTrantLock 的对比...
  • 关于extract.autodesk.io的一些说明
  • 技术攻略】php设计模式(一):简介及创建型模式
  • 融云开发漫谈:你是否了解Go语言并发编程的第一要义?
  • 深度学习中的信息论知识详解
  • 使用 5W1H 写出高可读的 Git Commit Message
  • 使用iElevator.js模拟segmentfault的文章标题导航
  • 事件委托的小应用
  • 通过获取异步加载JS文件进度实现一个canvas环形loading图
  • 微信如何实现自动跳转到用其他浏览器打开指定页面下载APP
  • 想晋级高级工程师只知道表面是不够的!Git内部原理介绍
  • 2017年360最后一道编程题
  • k8s使用glusterfs实现动态持久化存储
  • LevelDB 入门 —— 全面了解 LevelDB 的功能特性
  • python最赚钱的4个方向,你最心动的是哪个?
  • 湖北分布式智能数据采集方法有哪些?
  • ​中南建设2022年半年报“韧”字当头,经营性现金流持续为正​
  • ‌Excel VBA进行间比法设计
  • # 手柄编程_北通阿修罗3动手评:一款兼具功能、操控性的电竞手柄
  • #Linux(权限管理)
  • (html转换)StringEscapeUtils类的转义与反转义方法
  • (非本人原创)史记·柴静列传(r4笔记第65天)
  • (附源码)计算机毕业设计ssm基于Internet快递柜管理系统
  • (六)库存超卖案例实战——使用mysql分布式锁解决“超卖”问题
  • (南京观海微电子)——COF介绍
  • (贪心) LeetCode 45. 跳跃游戏 II
  • (转)C语言家族扩展收藏 (转)C语言家族扩展
  • (状压dp)uva 10817 Headmaster's Headache