当前位置: 首页 > news >正文

Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路

🎯要点

🎯计算地球大气层中热层金属坠物运动轨迹 | 🎯计算炮弹最佳弹射角度耦合微分方程 | 🎯计算电磁拉莫尔半径螺旋运动 | 🎯计算航天器重力弹弓运动力学微分方程 | 🎯计算双摆的混沌运动非线性微分方程,绘制相空图 | 🎯计算绝热和无粘流流体力学微分方程 | 🎯计算容器流体晃动自由表面简谐运动数学模型 | 🎯计算化学物质的伦纳德-琼斯势物理模型 | 🎯分析直流交流电阻电容电路

📜欧拉法 | 本文 - 用例

📜MATLAB雨刮通风空调模糊器和发电厂电力聚变器卷积神经

📜Python物理量和化学量数值计算

📜Python流感常微分方程房室数学模型

📜C++计算资本市场收益及成本分配数学方程

📜Python计算物理粒子及拉格朗日和哈密顿动力学

📜C代码快速傅里叶变换-分类和推理-常微分和偏微分方程

📜Python物理学有限差分微分求解器和动画波形传播

📜Julia评估劳动力市场经济数学模型价值策略选择

📜Python嵌入式动态用户调制解调响应式射频信号

📜Python机器人动力学和细胞酶常微分方程

📜Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜Python微磁学磁倾斜和西塔规则算法

📜Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算
在这里插入图片描述
在这里插入图片描述

🍇Python欧拉法

d S ( t ) d t = F ( t , S ( t ) ) \frac{d S(t)}{d t}=F(t, S(t)) dtdS(t)=F(t,S(t)) 为显式定义的一阶常微分方程。也就是说, F F F 是一个函数,它返回给定时间和状态值的状态的导数或变化。另外,令 t t t 为区间 [ t 0 , t f ] \left[t_0, t_f\right] [t0,tf] 的数字网格,间距为 h h h。不失一般性,我们假设 t 0 = 0 t_0=0 t0=0,并且对于某个正整数 N N N t f = N h t_f=N h tf=Nh

S ( t ) S(t) S(t) t j t_j tj 附近的线性近似为
S ( t j + 1 ) = S ( t j ) + ( t j + 1 − t j ) d S ( t j ) d t S\left(t_{j+1}\right)=S\left(t_j\right)+\left(t_{j+1}-t_j\right) \frac{d S\left(t_j\right)}{d t} S(tj+1)=S(tj)+(tj+1tj)dtdS(tj)
还可以写为:
S ( t j + 1 ) = S ( t j ) + h F ( t j , S ( t j ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_j, S\left(t_j\right)\right) S(tj+1)=S(tj)+hF(tj,S(tj))
这个公式称为显式欧拉公式,它允许我们在给定 S ( t j ) S\left(t_j\right) S(tj) 状态的情况下计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 状态的近似值。从给定的初始值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)开始,我们可以使用这个公式对状态进行积分直到 S ( t f ) S\left(t_f\right) S(tf);这些 S ( t ) S(t) S(t) 值是微分方程解的近似值。显式欧拉公式是解决初值问题最简单、最直观的方法。在任何状态 ( t j , S ( t j ) ) \left(t_j, S\left(t_j\right)\right) (tj,S(tj)),它在该状态下使用 F F F“指向”下一个状态,然后朝该方向移动 h h h的距离。尽管有更复杂和更准确的方法来解决这些问题,但它们都具有相同的基本结构。因此,我们明确列举了使用显式欧拉公式解决初始值问题的步骤。

假设我们有一个函数 F ( t , S ( t ) ) F(t, S(t)) F(t,S(t)) 计算 d S ( t ) d t \frac{d S(t)}{d t} dtdS(t),一个数值网格 t t t,区间 [ t 0 , t f ] \left[ t_0, t_f\right] [t0,tf],初始状态值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)。我们可以使用以下步骤计算 t t t 中每个 t j t_j tj S ( t j ) S\left(t_j\right) S(tj)

  • S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0) 存储在数组 S S S 中。
  • 计算 S ( t 1 ) = S 0 + h F ( t 0 , S 0 ) S\left(t_1\right)=S_0+h F\left(t_0, S_0\right) S(t1)=S0+hF(t0,S0)
  • S 1 = S ( t 1 ) S_1=S\left(t_1\right) S1=S(t1) 存储在 S S S
  • 计算 S ( t 2 ) = S 1 + h F ( t 1 , S 1 ) S\left(t_2\right)=S_1+h F\left(t_1, S_1\right) S(t2)=S1+hF(t1,S1)
  • S 2 = S ( t 1 ) S_2=S\left(t_1\right) S2=S(t1) 存储在 S S S​ 中。
  • 计算 S ( t f ) = S f − 1 + h F ( t f − 1 , S f − 1 ) S\left(t_f\right)=S_{f-1}+h F\left(t_{f-1}, S_{f-1}\right) S(tf)=Sf1+hF(tf1,Sf1)
  • S f = S ( t f ) S_f=S\left(t_f\right) Sf=S(tf) 存储在 S S S
  • S S S 是初始值问题的近似解

当使用具有这种结构的方法时,我们称该方法集成了常微分方程的解。

初始条件为 f 0 = − 1 f_0=-1 f0=1的微分方程 d f ( t ) d t = e − t \frac{d f(t)}{d t}=e^{-t} dtdf(t)=et有精确解 f ( t ) = − e − t f(t)=-e^{-t} f(t)=et 。使用显式欧拉公式,以 0.1 为增量,在 0 和 1 之间近似求解此初始值问题。绘制近似解和精确解之间的差异。

代码处理:

import numpy as np
import matplotlib.pyplot as pltplt.style.use('seaborn-poster')
%matplotlib inlinef = lambda t, s: np.exp(-t) 
h = 0.1 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

在上图中,我们可以看到每个点都是基于前一个点以线性方式进行的近似。从初始值,我们最终可以得到数值网格上解的近似值。如果我们对 h = 0.01 h=0.01 h=0.01 重复该过程,我们会得到更好的近似解:

h = 0.01 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'b--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

显式欧拉公式之所以被称为“显式”,是因为它只需要 t j t_j tj 处的信息来计算 t j + 1 t_{j+1} tj+1 处的状态。也就是说, S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 可以根据我们拥有的值(即 t j t_j tj S ( t j ) S\left(t_j\right) S(tj) )显式地编写。隐式欧拉公式可以通过在 t j + 1 t_{j+1} tj+1 周围取 S ( t ) S(t) S(t) 的线性近似并在 t j t_j tj 处计算来导出:
S ( t j + 1 ) = S ( t j ) + h F ( t j + 1 , S ( t j + 1 ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_{j+1}, S\left(t_{j+1}\right)\right) S(tj+1)=S(tj)+hF(tj+1,S(tj+1))
这个公式很奇特,因为它要求我们知道 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 才能计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1)!不过,有时候我们可以用这个公式来近似求解初值问题。在详细介绍如何使用隐式欧拉公式解决这些问题之前,我们先给出另一个隐式公式,称为梯形公式,它是显式和隐式欧拉公式的平均值:
S ( t j + 1 ) = S ( t j ) + h 2 ( F ( t j , S ( t j ) ) + F ( t j + 1 , S ( t j + 1 ) ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+\frac{h}{2}\left(F\left(t_j, S\left(t_j\right)\right)+F\left(t_{j+1}, S\left(t_{j+1}\right)\right)\right) S(tj+1)=S(tj)+2h(F(tj,S(tj))+F(tj+1,S(tj+1)))
为了说明如何求解这些隐式解,请再次考虑已简化为一阶的摆方程。

👉参阅一:计算思维

👉参阅二:亚图跨际

相关文章:

  • ubuntu开机怎么进入、退出命令行界面
  • 高效BUG管理:定级、分类和处理流程
  • 【SQL】drop、delete 与 truncate 的区别
  • Excel中插入的图片在不同电脑上消失的问题及解决方法
  • 裁员裁到大动脉,是一种什么体验!
  • Spring (68)如何管理Spring Boot应用的配置
  • 【云岚到家】-day04-1-数据同步方案-Canal-MQ
  • 【C++题解】1713 - 输出满足条件的整数3
  • IP地址介绍
  • java 接口的
  • Hi3861 OpenHarmony嵌入式应用入门--总引导连接
  • 剖析影响大米码垛机性能的关键因素
  • EXCEL数据导入HIVE
  • QT基础 - 常见图表绘制
  • 如何通过自定义模块DIY出专属个性化的CSDN主页?一招教你搞定!
  • [Vue CLI 3] 配置解析之 css.extract
  • create-react-app做的留言板
  • Invalidate和postInvalidate的区别
  • JAVA SE 6 GC调优笔记
  • Java教程_软件开发基础
  • Magento 1.x 中文订单打印乱码
  • Protobuf3语言指南
  • Python socket服务器端、客户端传送信息
  • React Native移动开发实战-3-实现页面间的数据传递
  • Vim 折腾记
  • 基于Vue2全家桶的移动端AppDEMO实现
  • 前端工程化(Gulp、Webpack)-webpack
  • 一起来学SpringBoot | 第三篇:SpringBoot日志配置
  • 正则表达式小结
  • 好程序员大数据教程Hadoop全分布安装(非HA)
  • 机器人开始自主学习,是人类福祉,还是定时炸弹? ...
  • ​configparser --- 配置文件解析器​
  • #1015 : KMP算法
  • #if和#ifdef区别
  • #QT(TCP网络编程-服务端)
  • $.extend({},旧的,新的);合并对象,后面的覆盖前面的
  • $redis-setphp_redis Set命令,php操作Redis Set函数介绍
  • (13)Hive调优——动态分区导致的小文件问题
  • (c语言版)滑动窗口 给定一个字符串,只包含字母和数字,按要求找出字符串中的最长(连续)子串的长度
  • (PHP)设置修改 Apache 文件根目录 (Document Root)(转帖)
  • (初研) Sentence-embedding fine-tune notebook
  • (简单有案例)前端实现主题切换、动态换肤的两种简单方式
  • (六)vue-router+UI组件库
  • (每日一问)计算机网络:浏览器输入一个地址到跳出网页这个过程中发生了哪些事情?(废话少说版)
  • (十二)python网络爬虫(理论+实战)——实战:使用BeautfulSoup解析baidu热搜新闻数据
  • (四)【Jmeter】 JMeter的界面布局与组件概述
  • (转) ns2/nam与nam实现相关的文件
  • (转)linux下的时间函数使用
  • .NET Core 控制台程序读 appsettings.json 、注依赖、配日志、设 IOptions
  • .NET MVC第三章、三种传值方式
  • .NET 线程 Thread 进程 Process、线程池 pool、Invoke、begininvoke、异步回调
  • /*在DataTable中更新、删除数据*/
  • /usr/local/nginx/logs/nginx.pid failed (2: No such file or directory)
  • @Async注解的坑,小心
  • @AutoConfigurationPackage的使用