当前位置: 首页 > news >正文

MySql Innodb 索引有哪些与详解

概述

对于MYSQL的INNODB存储引擎的索引,大家是不陌生的,都能想到是 B+树结构,可以加速SQL查询。但对于B+树索引,它到底“长”得什么样子,它具体如何由一个个字节构成的,这些的基础知识鲜有人深究。本篇文章从MYSQL行记录开始说起,层层递进,包括数据页,B+树聚簇索引,B+树二级索引,最后在文章末尾给出MYSQL索引的建议。

表空间

首先,我们来了解一下 MySQL 的表空间。在 MySQL 中,所有的数据都被存储在一个空间内,称之为表空间,表空间内部又可以分为段(segment)、区(extent)、页(page)、行(row),其逻辑结构如下图:

段(segment)

表空间是由不同的段组成的,常见的段有:数据段,索引段,回滚段等等,在 MySQL 中,数据是按照 B+ 树来存储,因此数据即索引,因此数据段即为 B+ 树的叶子节点,索引段为 B+ 树的非叶子节点,回滚段用于存储undo日志,用于事务失败后数据回滚以及在事务未提交之前通过undo日志获取之前版本的数据,在 InnoDB 1.1 版本之前,一个 InnoDB 只支持一个回滚段,支持 1023 个并发修改事务同时进行,在 InnoDB 1.2 版本,将回滚段数量提高到了 128 个,也就是说可以同时进行128 * 1023个并发修改事务。

区(extent)

区是由连续页组成的空间,每个区的固定大小为 1MB,为保证区中页的连续性,InnoDB 会一次从磁盘中申请 4 ~ 5 个区,在默认不压缩的情况下,一个区可以容纳 64 个连续的页。但是在开始新建表的时候,空表的默认大小为 96KB,是由于为了高效的利用磁盘空间,在开始插入数据时表会先利用 32 个页大小的碎片页来存储数据,当这些碎片使用完后,表大小才会按照 MB 倍数来增加。

页(page)

页是 InnoDB 存储引擎的最小管理单位,每页大小默认是 16KB,从 InnoDB 1.2.x 版本开始,可以利用innodb_page_size来改变页大小,但是改变只能在初始化 InnoDB 实例前进行修改,之后便无法进行修改,除非mysqldump导出创建新库,常见的页类型有:数据页、undo页、系统页、事务数据页、插入缓冲位图页、插入缓冲空闲列表页、未压缩的二进制大对象页以及压缩的二进制大对象页等。

行(row)

行对应的是表中的行记录,每页存储最多的行记录也是有硬性规定的最多16KB/2-200,即 7992 行,其中 16KB 是页大小。

Clustered Index 聚簇索引

MySQL InnoDB 引擎具有强制聚簇索引,通常使用主键。也就是主键就是Clustered Index,如果没有主键按以下规则生成。

Clustered Index 条件优化级:
  1. 表有明确的PRIMARY KEY:使用PRIMARY KEY

  2. 无PRIMARY KEY:InnoDB 默认使用第一个 UNIQUE INDEX,且索引列需要全部定义为非空列(NOT NULL)作为Clustered Index

  3. 如无PRIMARY KEY,也没有合适的UNIQUE INDEX,InnoDB将会在包含行ROW ID的合成列上生成一个名为GEN_CLUST_INDEX的隐藏Clustered Index

ROW ID:ROW ID是6 byte字段,由InnoDB分配,用于行排序。插入新行而单调增加,在物理上插入按ROW ID顺序排列

注:UNIQUE INDEX 包含的列需要全部定义为NOT NULL非空,才会被当做Clustered Index

MyISAM 存储引擎不支持聚簇索引并且一直使用堆表

2. 聚簇索引如何加速查询

通过聚簇索引访问行很快,因为索引搜索直接指向包含行数据的页面。如果表很大,与使用与索引记录不同的页来存储行数据的存储组织相比,聚簇索引架构通常可以节省磁盘 I/O 操作。

3. Clustered Index 示例及查询:

INNODB_INDEXES 表type字段说明:

  • 0 = 非唯一索引的二级索引 :nonunique secondary index;

  • 1 = 自动生成的聚簇索引:automatically generated clustered index (GEN_CLUST_INDEX);

  • 2 = 唯一索引(非聚簇索引): unique nonclustered index;

  • 3 = 聚簇索引 clustered index;

  • 32 = 全文索引 full-text index

不同MySQL版本表名不同,使用命令查询:SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_%';

自动生成名为GEN_CLUST_INDEX的Clustered Index示例:

-- 创建无主键、无唯一索引 
CREATE TABLE `clustered_index_demo` (`id` int DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;-- 查询表索引 
-- 如5.7以下版本表名不同,使用命令查询:SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_SYS%';
SELECT t2.INDEX_ID ,t2.`NAME` , t2.TABLE_ID , t2.`TYPE` , t2.N_FIELDS , t2.PAGE_NO , t2.`SPACE` , t2.MERGE_THRESHOLD
FROM information_schema.INNODB_TABLES t1 
INNER JOIN information_schema.INNODB_INDEXES t2 ON t1.TABLE_ID = t2.TABLE_ID
WHERE t1.`NAME` = 'wiki/clustered_index_demo';-- 查询结果| INDEX_ID | NAME            | TABLE_ID | TYPE | N_FIELDS | PAGE_NO | SPACE | MERGE_THRESHOLD |
|----------|-----------------|----------|------|----------|---------|-------|-----------------|
|     3616 | GEN_CLUST_INDEX |     3276 |    1 |        5 |       4 |  2113 |  
增加包含NOT NULL列的唯一索引示例:

Tips : 修改表结构,InnoDB将删除原自动生成的GEN_CLUST_INDEX索引

-- 增加两列
ALTER TABLE `wiki`.`clustered_index_demo`
ADD COLUMN `username` varchar(32) NOT NULL,
ADD COLUMN `name` varchar(64) NOT NULL;
-- 增加唯一索引 
ALTER TABLE `wiki`.`clustered_index_demo`
ADD UNIQUE INDEX `IDX_UNIQUE` (`username`,`name`) USING BTREE;| INDEX_ID | NAME       | TABLE_ID | TYPE | N_FIELDS | PAGE_NO | SPACE | MERGE_THRESHOLD |
|----------|------------|----------|------|----------|---------|-------|-----------------|
|     3620 | IDX_UNIQUE |     3278 |    3 |        5 |       4 |  2115 |              50 |
唯一索引包含NULL列
-- 将唯一索引,其中一列改为NULL, Clustered Index将被删除,重新生成GEN_CLUST_INDEX
ALTER TABLE `wiki`.`clustered_index_demo`
CHANGE `username` `username` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL,
CHANGE `name` `name` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL;| INDEX_ID | NAME            | TABLE_ID | TYPE | N_FIELDS | PAGE_NO | SPACE | MERGE_THRESHOLD |
|----------|-----------------|----------|------|----------|---------|-------|-----------------|
|     3625 | GEN_CLUST_INDEX |     3281 |    1 |        6 |       4 |  2118 |              50 |
|     3626 | IDX_UNIQUE      |     3281 |    2 |        3 |       5 |  2118 |      

查询所有自动生成的Clustered Index

SELECTi.TABLE_ID,t.NAME
FROMinformation_schema.INNODB_INDEXES iJOIN information_schema.INNODB_TABLES t ON (i.TABLE_ID = t.TABLE_ID)
WHEREi.NAME = 'GEN_CLUST_INDEX';| TABLE_ID | NAME                      |
|----------|---------------------------|
|     3281 | wiki/clustered_index_demo |

 辅助索引

除了聚簇索引之外的索引都可以称之为辅助索引,与聚簇索引的区别在于辅助索引的叶子节点中存放的是主键的键值。一张表可以存在多个辅助索引,但是只能有一个聚簇索引,通过辅助索引来查找对应的航记录的话,需要进行两步,第一步通过辅助索引来确定对应的主键,第二步通过相应的主键值在聚簇索引中查询到对应的行记录,也就是进行两次 B+ 树搜索。相反,通过辅助索引来查询主键的话,遍历一次辅助索引就可以确定主键了,也就是所谓的索引覆盖,不用回表。

创建辅助索引,可以创建单列的索引,也就是用一个字段来创建索引,也可以用多个字段来创建副主索引称为联合索引,创建联合索引后,B+ 树的节点存储的键值数量不是 一个,而是多个,如下图:

  • 联合索引的 B+ 树和单键辅助索引的 B+ 树是一样的,键值都是排序的,通过叶子节点可以逻辑顺序的读出所有的数据,比如上图所存储的数据时,按照(a,b)这种形式(1,1),(1,2),(2,1),(2,4),(3,1),(3,2)进行存放,这样有个好处,那就是存放数据时排序了,当进行order by对某个字段进行排序时,可以减少复杂度,加速进行查询;

  • 当用select * from table where a=? and ?可以使用索引(a,b)来加速查询,但是在查询时有一个原则,SQL 的where条件的顺序必须和二级索引一致,而且还遵循索引最左原则,select * from table where b=?则无法利用(a,b)索引来加速查询。

  • 辅助索引还有一个概念便是索引覆盖,索引覆盖的一个好处便是辅助索引不包含行记录,因此其大小远远小于聚簇索引,利用辅助索引进行查询可以减少大量的 IO 操作。

索引的优缺点及建议

 

优点:

  1. 对于等值查询,可快速定位到对于的行记录。

  2. 对于范围查询,可辅助缩小扫描区间。

  3. 当ORDER BY的列名 与 索引的列名完全一致时,可加快排序的顺序。

  4. 当GROUP BY的列名 与 索引的列名完全一致时,可加快分组。

  5. 当二级索引列中 包含了 SELECT 关键字后面写明的所有列,则在查询完成二级索引之后无需进行回表操作,直接返回即可。这种情况,称为【覆盖索引】。

缺点:

建立索引占用磁盘空间。

对表中的数据进行 增加,删除,修改 操作时,都需要修改各个索引树,特别是如果新增的行记录的主键顺序不是递增的,就会产生页分裂,页回收等操作,有较大的时间成本。

当二级索引列的值 的 不重复值的个数较少时,通过二级索引查询找到的数据量就会比较多,相应的就会产生过多的回表操作。

在执行查询语句的时候,首先要生成一个执行计划。通常情况下,一个SQL在执行过程中最多使用一个二级索引,在生成执行计划时需要计算使用不同索引执行查询时所需的成本,最后选择成本最低的那个索引执行查询。因此,如果建立太多的索引,就会导致成本分析过程耗时太多,从而影响查询语句的性能。

建议:

  1. 只为用于搜索,排序,分组的列创建索引。

  2. 索引的列需要有辨识性,尽可能地区分出不同的记录。

  3. 索引列的类型尽量小。因为数据类型越小,索引占用的存储空间就越少,在一个数据页内就可以存放更多的记录,磁盘I/O带来的性能损耗也就越小。

  4. 如果需要对很长的字段进行快速查询,可考虑为列前缀建立索引。【alter table table_M add index idx_key1(column_n(10)) -->  将table_M表的 idx_key1列的前10个字符创建索引】

  5. 覆盖索引,当二级索引列中包含了SELECT关键字后面写明的所有列,则在查询完成二级索引之后无需进行回表操作,直接返回即可。因此,编写【select *】的时候,要想想是否必要

  6. 在查询语句中,索引列不要参与条件值计算,也是把条件值计算完成之后,再和索引列对比。【否则MYSQL会认为搜索条件不能形成合适的扫描区间来减少扫描的记录数量】

 

 

相关文章:

  • Android与服务器交互的方式中的对称加密和非对称加密(kotlin)
  • 用pycharm进行python爬虫的步骤
  • vue3使用vant4的列表vant-list点击进入详情自动滚动到对应位置,踩坑日记(一天半的踩坑经历)
  • REST API 中的 HTTP 请求参数
  • 数据结构-第七章(最后一部分散列表)
  • Linux线程互斥锁
  • vue如何把组件方法暴露到window对象中
  • SpringBoot学习05-[SpringBoot的嵌入式Servlet容器]
  • vue2和vue3中实现点击复制粘贴功能
  • Java 泛型:上界通配符和下界通配符的用途和限制
  • 绝区零国际服怎么下载 绝区零国际服下载教程
  • 为什么有些人思考得多,决策反而不好?避免过度拟合的终极指南:决策高手的秘密:灰度认知,黑白决策
  • 什么是 API 代理?
  • 华为机试HJ3明明的随机数
  • 每日一练 - Routing Policy节点逻辑
  • JS中 map, filter, some, every, forEach, for in, for of 用法总结
  • 《用数据讲故事》作者Cole N. Knaflic:消除一切无效的图表
  • 【MySQL经典案例分析】 Waiting for table metadata lock
  • 【每日笔记】【Go学习笔记】2019-01-10 codis proxy处理流程
  • 0x05 Python数据分析,Anaconda八斩刀
  • 2017年终总结、随想
  • learning koa2.x
  • Nodejs和JavaWeb协助开发
  • Python语法速览与机器学习开发环境搭建
  • RedisSerializer之JdkSerializationRedisSerializer分析
  • Selenium实战教程系列(二)---元素定位
  • STAR法则
  • Synchronized 关键字使用、底层原理、JDK1.6 之后的底层优化以及 和ReenTrantLock 的对比...
  • UEditor初始化失败(实例已存在,但视图未渲染出来,单页化)
  • vue+element后台管理系统,从后端获取路由表,并正常渲染
  • Vue2.0 实现互斥
  • 程序员该如何有效的找工作?
  • 从输入URL到页面加载发生了什么
  • 你真的知道 == 和 equals 的区别吗?
  • 区块链共识机制优缺点对比都是什么
  • 试着探索高并发下的系统架构面貌
  • 问题之ssh中Host key verification failed的解决
  • ​软考-高级-信息系统项目管理师教程 第四版【第19章-配置与变更管理-思维导图】​
  • ​水经微图Web1.5.0版即将上线
  • #微信小程序(布局、渲染层基础知识)
  • ${factoryList }后面有空格不影响
  • (06)Hive——正则表达式
  • (09)Hive——CTE 公共表达式
  • (2022 CVPR) Unbiased Teacher v2
  • (3) cmake编译多个cpp文件
  • (3)llvm ir转换过程
  • (android 地图实战开发)3 在地图上显示当前位置和自定义银行位置
  • (C语言版)链表(三)——实现双向链表创建、删除、插入、释放内存等简单操作...
  • (八)Docker网络跨主机通讯vxlan和vlan
  • (附源码)spring boot火车票售卖系统 毕业设计 211004
  • (附源码)springboot金融新闻信息服务系统 毕业设计651450
  • (附源码)ssm高校运动会管理系统 毕业设计 020419
  • (算法)求1到1亿间的质数或素数
  • (小白学Java)Java简介和基本配置
  • (一)C语言之入门:使用Visual Studio Community 2022运行hello world