当前位置: 首页 > news >正文

关于string的‘\0‘与string,vector构造特点加部分特别知识点的讨论

目录

前言:

问题一:关于string的''\0''问题讨论

问题二:C++标准库中的string内存是分配在堆上面吗?

问题三:string与vector的capacity大小设计的特点

问题四:string的流提取问题

问题五:迭代器失效

 问题六:Vector 最大 最小值 索引 位置

前言:

前几篇文章我们已经介绍完了string,vector,list的使用与string的使用原理,但是仅仅知道这些对于我们日常使用来说已经够了,但是在我们日常使用的时候,不免会有报错与相关的疑惑,那么这里我介绍几个我认为有问题的地方,后续有问题的话,还会继续补充。

问题一:关于string的''\0''问题讨论

之前在某篇文章中看到,C语言字符串是以'\0'结尾的,但是C++string类型的字符串并不是以'\0'结尾。话不多说,直接放代码(vsX86环境):

#include<iostream>
#include<string>
using namespace std;
int main()
{string b("abc");cout << b.capacity() << endl;cout << b.size() << endl;if (b[3] == '\0')cout << "yes" << endl;elsecout << "no" << endl;return 0;
}

运行结果:

.

可以看到我们创建的这个string,他的容器大小为15,这个string存储大小为3,但是我们却可以通过越界访问  b[3]   ,并且通过验证字符串的结尾就是'\0'。此时我的内心是疑惑的,心想"abc"是C语言风格的字符串给b构造,肯定会把"abc"后面影藏的'\0'给构造进去,如果不会这样就会在迭代器里面不会遇见结束表示符。那么至于这里的结尾的最后一个'\0',从结果来说是大小size不计算的,所以大小size是3。

但是我们又尝试别的构造的话又会尝试别的疑惑,比如这个代码:

#include<iostream>
#include<string>
using namespace std;
int main()
{string b("abcd",3);//这种构造方法是通过字符串abcd,然后只取前3个字符进行构造string//但是这个字符串存放的其实是 abcd\0cout << b.capacity() << endl;cout << b.size() << endl;if (b[3] == '\0')cout << "yes" << endl;elsecout << "no" << endl;return 0;
}

结果跟上面一模一样。此刻我又想,构造函数会在末尾自动添加一个'\0',并且size和capacity函数都不计算'\0'的。

但是我们一开始是假设他跟c语言的风格相似的会把abc后面的'\0'会自动添加上,但是我们这个代码是只取了abcd\0这个字符串的前三个,没有'\0'啊~!

所以此刻,我肯定是矛盾的!!因为最开始说string字符串是不以'\0'结尾的,但是测试下来,确实是以'\0'结尾的。

哎呀~为什么呢?经过查阅资料后,才得知了其中的奥妙,奥妙如下:

std::string:标准中未明确规定需要\0作为字符串结尾。编译器在实现时既可以在结尾加\0,也可以不加。(因编译器不同,就比如vs就不用)

但是,当通过c_str()或data()(二者在 C++11 及以后是等价的)来把std::string转换为const char *时,会发现最后一个字符是\0。但是C++11,string字符串都是以'\0'结尾(这也是c++祖师爷为以前的自己的规定的优化)。



为什么C语言风格的字符串要以'\0'结尾,C++可以不要?

c语言用char*指针作为字符串时,在读取字符串时需要一个特殊字符0来标记指针的结束位置,也就是通常认为的字符串结束标记。而c++语言则是面向对象的,长度信息直接被存储在了对象的成员中,读取字符串可以直接根据这个长度来读取,所以就没必要需要结束标记了。而且结束标记也不利于读取字符串中夹杂0字符的字符串。



这里我们深入一下string的构造时的细节:

#include<iostream>
#include<string>
using namespace std;
int main()
{int aa = 0;printf("栈区的地址:%p\n", &aa);int* pl = new int;printf("堆区的地址:%p\n", pl);string a("abcddddddddddddddddddddddddd", 20);printf("a的地址:    %p\n", &a);printf("a[0]的地址: %p\n", &a[0]);a[1] = 'X';cout << a << endl;printf("a的地址:    %p\n", &a);printf("a[0]的地址: %p\n", &a[0]);string b("abc");printf("b的地址:    %p\n", &b);printf("b[0]的地址: %p\n", &b[0]);return 0;
}

然后通过运行的知,

用红色标注出来的是在栈上存储的,蓝色标注的时在堆上存储的,然而a,b就与指针类似,他们指向一片空间,空间内存储的对象信息, 对象地址分别是006FF6AC与006FF688,他俩的地址跟栈区地址最为接近所以该对象存储在栈区上。同理a[0]是堆区上,但是b[0]按道理也应该是在堆区上,但是为什么会是是在栈区上呢?其实这是c++的一个特殊处理,这里留下一个小疑问,(下一个问题进行解答,这里先给出为什么的答案:当string内存存储的个数在16以内(包括'\0')(后面解释为什么是16)在栈上,超过以后在堆上。)

所以,string在构造函数的时候,会在堆上开辟一块内存存放字符串,并且指向这块字符串。

(这里给大家提问一个小问题:就是为什么a先定义的,但是a对象地址为什么比b的大?)

解答:a、b是两个局部对象变量,栈是向下增长的,所以先入栈的变量地址高,即&a > &b,



问题二:C++标准库中的string内存是分配在堆上面吗?

例如我声明一个string变量。
string str;
一直不停的str.append("xxxxx");时,str会不停的增长。

我想问的是这个内存的增长,标准库中的string会把内存放置到堆上吗?

另外STL中的其他容器是否遵循相同的规则。

首先我们给出结论:16以内在栈上,超过以后在堆上。(这句话的答案省略上面的问题的前提条件:【在栈上构造的 string 对象】,如果string 是 new 出来的即在堆上构造的,当然内部的缓冲区总是在堆上的)。(vector也是如此,但是细节上略有不同)

为什么要这样做呢?

如果以动态增长来解释就是:

因为栈通常是一种具有固定大小的数据结构,如数组实现的栈在创建时会指定一个固定的容量。因此,一般情况下,栈是不支持动态增长的。 

所以是存储在堆上的。

其实还有另一个原因,那么下一个问题给出解答;

问题三:string与vector的capacity大小设计的特点

在我们设计string与vector的时候,你是否观察过他的capacity的大小呢?就比如vs里面为什么会让string与vector在其存储的内存个数小于16时会将数据存储在栈上,大于16存储在堆上呢?

这是因为string与vector第一次会在栈上开辟空间,直接开辟16个单位空间,然后挨个进行流提取,这样的话就会方便很多 ,就算要再添加数据,也不需要进行动态增长,然后这个16个单位空间就是string与vector的capacity。这里的证明可以通过调试自己查看他的capacity,当然编译器不同,可能这个首次开辟空间大小略有不同,但是不影响。

总的来说这两种解释都是解决的次要问题,他这样设计主要为了解决内存碎片的问题;如果存储的内容大小小于16,他就会先存在栈上的数组里面,当大于16,就会进行拷贝到堆上,然后栈上的数组就会进行浪费,这样达到了利用空间换时间的效果

问题四:string的流提取问题

首先如果我们自己实现string的流提取,我们会下意识认为会挨个提取输入的字符,然后挨个与s进行对接,代码试下如下: (这个代码实现的流提取是完全没有问题的)

istream& operator>>(istream& in, string& s)
{s.clear();char ch;ch = in.get();while (ch != ' ' && ch != '\n'){s += ch;ch = in.get();}return in;
}

但是这样写会有一个弊端,就是会多次进行扩容,俗话常说:扩容本身就是一件麻烦的时,浅拷贝就不多说了,深拷贝就更麻烦了;

所以后来就进行了优化,会先开辟一个数组,然后将流提取的字符挨个放到数组里面,当数组满的时候(或者流提取的字符提取完了)我们当让s+=数组;这样既保证了存储的数据在堆上,也避免了多次进行扩容;(需要注意的是我们要自己添加 '\0' 在string的末尾)

	istream& operator>>(istream& in, string& s){s.clear();char buff[129];size_t i = 0;char ch;//in >> ch;ch = in.get();s.reserve(128);while (ch != ' ' && ch != '\n'){buff[i++] = ch;if (i == 128){buff[i] = '\0';s += buff;i = 0;}//in >> ch;ch = in.get();}if (i != 0){buff[i] = '\0';s += buff;}return in;}

当然这上面的两个问题都是存在于string于vector上的,因为他们存储的数据是连续的,二list作为链表就不存在这样的问题。 

问题五:迭代器失效

然而迭代器失效就不一样了,string,vector,list都存在。

在我们使用迭代器进行遍历的时候,不免会出现不正当的使用而使其迭代器失效;

失效的主要原因就是:迭代器对应的指针所指向的空间已经被销毁了,而使用一块已经被释放的空间的时候,就会造成程序崩溃(即如果继续使用已经失效的迭代器, 程序可能会崩溃)。俗话来说就是野指针了。

前面我们都在用string来进行解释,这里我们使用vector来解释,

1

就比如下面这个代码:

include<iostream>
#include<vector>
using namespace std;int main()
{vector<int> v(10, 1);auto it = v.begin();v.insert(it, 0);(*it)++;return 0;
}

看起来没有问题,但是我们是先给迭代器赋值,然后进行插入,但是有一点问题就是如果插入时恰好进行扩容,并且时异地扩容,那么这个it就会变为野指针。从而达到迭代器失效的问题。

2

同样插入存在异地扩容,当然删除也存在着迭代器失效的问题;

#include<iostream>
#include<vector>
using namespace std;int main()
{vector<int> v(10, 1);auto it = v.end() - 1;v.erase(it);(*it)++;return 0;
}

这时候如果再进行使用it,那么就会报错。

注意:

  1. vs 对于迭代器失效检查很严格,如使用了 erase 之后,之前的迭代器就不允许使用,只有重新给迭代器赋值,才可以继续使用
  2. Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

 问题六:Vector 最大 最小值 索引 位置

#include<iostream>
#include<vector>
using namespace std;int main()
{vector<double> v{ 1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 2.0, 3.0, 4.0, 5.0 };vector<double>::iterator biggest = max_element(begin(v), end(v));cout << "Max element is " << *biggest << " at position " << distance(begin(v), biggest) << endl;auto smallest = min_element(begin(v), end(v));cout << "min element is " << *smallest << " at position " << distance(begin(v), smallest) << endl;return 0;
}

运行结果:



到这里就完了,写作不易还请点赞;

相关文章:

  • 详细对比Java SPI、Spring SPI 和 Dubbo SPI
  • 【机器学习】特征选择:精炼数据,提升模型效能
  • 暴雨突袭不可不看!水浸传感器作用有这些
  • ubuntu 查看联网配置
  • PaddleVideo:Squeeze Time算法移植
  • WebOffice在线编微软Offfice,并以二进制流的形式打开Word文档
  • 【软件测试】 1+X初级 功能测试试题
  • antDesignPro随记
  • Python OpenCV 教学取得视频资讯
  • 电动卡丁车语音芯片方案选型:让驾驶体验更智能、更安全
  • el-date-picker 禁用 之前 和 之后 的时间
  • uniapp easycom组件冲突
  • 云服务部署和管理:容器化与微服务的融合之道
  • mybatisplus不想输出批量插入和查询日志
  • 观察矩阵(View Matrix)、投影矩阵(Projection Matrix)、视口矩阵(Window Matrix)及VPM矩阵及它们之间的关系
  • 分享一款快速APP功能测试工具
  • ES10 特性的完整指南
  • gcc介绍及安装
  • git 常用命令
  • Hibernate最全面试题
  • JavaScript 是如何工作的:WebRTC 和对等网络的机制!
  • JavaScript设计模式与开发实践系列之策略模式
  • laravel 用artisan创建自己的模板
  • MaxCompute访问TableStore(OTS) 数据
  • mockjs让前端开发独立于后端
  • PHP 使用 Swoole - TaskWorker 实现异步操作 Mysql
  • Promise面试题2实现异步串行执行
  • Python连接Oracle
  • webpack入门学习手记(二)
  • windows下mongoDB的环境配置
  • 创建一个Struts2项目maven 方式
  • 计算机常识 - 收藏集 - 掘金
  • 悄悄地说一个bug
  • 入口文件开始,分析Vue源码实现
  • 入门到放弃node系列之Hello Word篇
  • 网络应用优化——时延与带宽
  • 关于Android全面屏虚拟导航栏的适配总结
  • 你学不懂C语言,是因为不懂编写C程序的7个步骤 ...
  • 曾刷新两项世界纪录,腾讯优图人脸检测算法 DSFD 正式开源 ...
  • ​TypeScript都不会用,也敢说会前端?
  • ​第20课 在Android Native开发中加入新的C++类
  • ​决定德拉瓦州地区版图的关键历史事件
  • (1/2) 为了理解 UWP 的启动流程,我从零开始创建了一个 UWP 程序
  • (DenseNet)Densely Connected Convolutional Networks--Gao Huang
  • (ISPRS,2021)具有遥感知识图谱的鲁棒深度对齐网络用于零样本和广义零样本遥感图像场景分类
  • (八)Flask之app.route装饰器函数的参数
  • (附源码)springboot车辆管理系统 毕业设计 031034
  • (附源码)springboot猪场管理系统 毕业设计 160901
  • (六)激光线扫描-三维重建
  • (十三)Maven插件解析运行机制
  • (淘宝无限适配)手机端rem布局详解(转载非原创)
  • (已更新)关于Visual Studio 2019安装时VS installer无法下载文件,进度条为0,显示网络有问题的解决办法
  • (转)setTimeout 和 setInterval 的区别
  • (自用)网络编程
  • ***利用Ms05002溢出找“肉鸡