当前位置: 首页 > news >正文

算法学习笔记(8.4)-完全背包问题

目录

Question:

图例:

动态规划思路

2 代码实现:

3 空间优化:

代码实现:

下面是0-1背包和完全背包具体的例题:

代码实现:

图例:

空间优化代码示例

Question

给定n个物品,第i个物品的重量为wgt[i-1],价值为val[i-1],和一个容量为cap的背包。每个物品可以重复选取,问在限定背包容量的情况下能放入物品的最大价值。

图例:

  1. 动态规划思路

完全背包问题和0-1背包问题非常相似,区别仅在于不限制物品的选择次数。

  1. 在0-1背包问题中,每种物品只有一个,因此将物品i放入到被曝后,只能从前i-1个物品选择。
  2. 在完全背包问题中,每种物品的数量都是无限的,因此将物品i放入到背包后,仍可以从前i个物品中选择。

在完全背包问题的规定下,状态[i,c]的变化分为以下两种情况。

  1. 不放入物品i:与0-1背包问题相同转移至[i-1,c]。
  2. 放入物品i:与0-1背包问题不同,转移至[i,c-wgt[i-1]]。

从而转移状态方程为:

dp[i,c] = max(dp[i-1,c],dp[i,c-wgt[i-1]]+val[i-1])

2 代码实现:
# python 代码示例
def unbound_knap_sack_dp(wgt, val, cap) :n = len(wgt)dp = [ [0] * (cap + 1) for _ in range(n + 1)]for i in range(1, n + 1) :for j in range(1, cap + 1) :if wgt[i - 1] > c :dp[i][c] = dp[i - 1][c]else :dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]]  + val[i - 1])return dp[n][cap]
// c++ 代码示例int unboundKnapSackDP(vector<int> &wgt, vector<int> &val, int cap)
{int n = wgt.size() ;vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0)) ;for (int i = 1 ; i <= n ; i++){for (int j = 1 ; j <= cap ; j++){if (wgt[i - 1] > c){dp[i][c] = dp[i - 1][c] ;}else{dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1) ;}}}return dp[n][cap] ;
}

3 空间优化:

由于当前状态是从左边和上边的状态转移而来,因此空间优化后应该对dp表中的每一行进行正序遍历。

图例所示:

代码实现:
# python 代码示例def unbound_knap_sack_dp_comp(wgt, val, cap) :n = len(wgt)dp = [0] * (cap + 1)for i in range(1, n + 1) :for j in range(1, cap + 1) :if wgt[i - 1] > c :dp[c] = dp[c]else :dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]) return dp[cap] ;
// c++ 代码示例int unboundKnapSackDPComp(vector<int> &wgt, vector<int> &val, int cap)
{int n = wgt.size() ;vector<int> dp(cap + 1, 0) ;for (int i = 1 ; i <= n ; i ++){for (int j = 1 ; j <= cap ; j++){if (wgt[i - 1] > c){dp[c] = dp[c] ;}else{dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]) ;}}}return dp[c] ;
}

下面是0-1背包和完全背包具体的例题:

零钱兑换问题:给定n中硬币,第i种硬币的面值为coins[i-1],目标金额为amt,每种硬币可以重复选取,问能够凑出目标金额的最少硬币数。如果无法凑出目标金额,则返回-1。

图例:

动态规划的思路:

零钱兑换可以看作是完全背包的一种特殊情况,两者具有以下联系和不同点。

  1. 两道题目可以相互转化,“物品“对应”硬币“、”物品重量“对应”硬币面值“、”背包容量“对应”目标金额“。
  2. 优化目标相反,完全背包问题是要最大化物品价值,零钱兑换问题是要最小化硬币数量。
  3. 完全背包问题是求“不超过“背包容量下的解,零钱兑换是求”恰好“凑到目标金额的解。

第一步:思考每轮的决策,定义状态,从而得到dp表

状态[i,a]对应的子问题为:前i种硬币能够凑出金额a的最少硬币数量,记作dp[i,a]。

二维dp表的尺寸为(n+1)*(amt+1).

第二步:找出最优子结构,进而推导出状态转移方程

本题与完全背包问题的转移状态方程存在以下两点差异。

  1. 本题要求最小值,因此需将运算符max()更改为min()。
  2. 优化主体是硬币数量而非商品的价值,因此在选中硬币时需执行+1即可。

dp[i,a] = min(dp[i-1,a],dp[i,a-coins[i-1]]+1)

第三步:确定边界和状态转移顺序

当目标金额为0时,凑出它的最小硬币数量为0,即首列所有dp[i,0]都等于0。

当无硬币时,无法凑出任意>0的目标金额,即使无效解。为使状态转移方程中的min()函数能够识别并过滤无效解,我们使用+∞来表示他们,即令首行所有dp[0,a]都等于+∞。

代码实现:
def coin_change_dp(coins, amt) :n = len(coins)dp = [ [0] * (amt + 1) for _ in range(n + 1)]for j in range(1, amt + 1) :dp[0][j] = inffor i in range(1, n + 1) :dp[i][0] = 0for i in range(1, n + 1) :for j in range(1, cap + 1) :if coins[i - 1] > j :dp[i][j] = dp[i - 1][j]else :dp[i][j] = max(dp[i - 1][j], dp[i][j - coins[i - 1]] + 1)return dp[n][amt] if dp[n][amt] != inf else -1
int coinsChangeDP(vector<int> &coins, int amt)
{int n = coins.size() ;vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0)) ;for (int j = 1 ; j <= amt ; j++) {dp[0][j] = INT_MAX ;}for (int i = 1 ; i <= n ; i++){dp[i][0] = 0 ;}for (int i = 1 ; i <= n ; i++){for (int j = 1 ; j <= amt ; j++){if (coins[i - 1] > j){dp[i][j] = dp[i - 1][j] ;}else{dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i - 1]] + 1) ;}}}return dp[n][amt] != INT_MAX ? dp[n][amt] : -1 ;}

图例:

空间优化代码示例:
# python 代码示例def coins_change_dp_comp(coins, amt) :n = len(coins)dp = [inf] * (amt + 1)for i in range(1, n + 1) :for j in range(1, cap + 1) :if (coins[i - 1] > j) :dp[j] = dp[j]else :dp[j] = min(dp[j], dp[j - coins[i - 1]] + 1)return dp[amt] if dp[amt] != inf else -1
// c++ 代码示例
int coinsChangeDPComp(vector<int> &coins, int amt)
{int n = coins.size() ;vector<int> dp(cap + 1, INT_MAX) ;for (int i = 1 ; i <= n ; i++){for (int j = 1 ; j <= amt ; j++){if (coins[i - 1] > j){dp[j] = dp[j] ;}else{dp[j] = min([j], [j - coins[i - 1]] + 1) ;}}}return dp[amt] != INT_MAX ? dp[amt] : -1 ;}

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 【C++】C++中SDKDDKVer.h和WinSDKVer.h函数库详解
  • uboot学习:(四)顶层makefile分析
  • Vulnhub靶场DC-6练习
  • 校园跑腿服务平台的技术实现与案例分析
  • 3-2 多层感知机的从零开始实现
  • 三级_网络技术_14_局域网技术基础及应用
  • JavaScript青少年简明教程:开发工具与运行环境
  • 0302GPIO外设输入功能
  • vue 自定义滚动条同步拖动(移动端)
  • VUE + 小程序 关于前端循环上传附件页面卡死的问题
  • 大模型最新黑书:基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理 PDF
  • 永磁同步电机控制算法--基于 SVM 的无磁链环 DTC
  • 远程帮客户解决“应用程序无法正常启动0xc000007b,请单击确定关闭应用程序”的问题
  • C# Winform 自定义事件实战
  • 前后端项目部署方案汇总
  • python3.6+scrapy+mysql 爬虫实战
  • [译] 怎样写一个基础的编译器
  • AngularJS指令开发(1)——参数详解
  • codis proxy处理流程
  • cookie和session
  • Docker 1.12实践:Docker Service、Stack与分布式应用捆绑包
  • Java-详解HashMap
  • js学习笔记
  • Node + FFmpeg 实现Canvas动画导出视频
  • python docx文档转html页面
  • Zepto.js源码学习之二
  • 工程优化暨babel升级小记
  • 关于Java中分层中遇到的一些问题
  • 理解IaaS, PaaS, SaaS等云模型 (Cloud Models)
  • 你不可错过的前端面试题(一)
  • 普通函数和构造函数的区别
  • 如何利用MongoDB打造TOP榜小程序
  • 如何设计一个微型分布式架构?
  • 问题之ssh中Host key verification failed的解决
  • 阿里云服务器购买完整流程
  • ​必胜客礼品卡回收多少钱,回收平台哪家好
  • ‌移动管家手机智能控制汽车系统
  • #### go map 底层结构 ####
  • (C语言)深入理解指针2之野指针与传值与传址与assert断言
  • (delphi11最新学习资料) Object Pascal 学习笔记---第7章第3节(封装和窗体)
  • (Matlab)使用竞争神经网络实现数据聚类
  • (附源码)apringboot计算机专业大学生就业指南 毕业设计061355
  • (含笔试题)深度解析数据在内存中的存储
  • (每日一问)基础知识:堆与栈的区别
  • (七)Activiti-modeler中文支持
  • (三十五)大数据实战——Superset可视化平台搭建
  • (五)c52学习之旅-静态数码管
  • (转)Java socket中关闭IO流后,发生什么事?(以关闭输出流为例) .
  • ***php进行支付宝开发中return_url和notify_url的区别分析
  • ... fatal error LINK1120:1个无法解析的外部命令 的解决办法
  • .NET Core 将实体类转换为 SQL(ORM 映射)
  • .NET Core工程编译事件$(TargetDir)变量为空引发的思考
  • .NET Core中的去虚
  • .Net Remoting(分离服务程序实现) - Part.3
  • .NET 同步与异步 之 原子操作和自旋锁(Interlocked、SpinLock)(九)