当前位置: 首页 > news >正文

昇思 25 天学习打卡营第 24 天 | MindSpore Pix2Pix 实现图像转换

1. 背景:

使用 MindSpore 学习神经网络,打卡第 24 天;主要内容也依据 mindspore 的学习记录。

2. PixPix 介绍:

MindSpore 的 Pix2Pix 图像转换

  • 介绍
    Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。Pix2Pix是将cGAN应用于有监督的图像到图像翻译的经典之作,其包括两个模型:生成器和判别器。

  • 论文
    Conditional Generative Adversarial Networks 论文地址
    Image-to-Image Translation with Conditional Adversarial Networks

  • 基本原理:
    cGAN 与 GAN 区别:
    a. 输入不同:
    cGAN 生成器输入图片,作为指导信息,生成假图像。本质是:输入图像转换输出为相应“假”图像的本质是从像素到另一个像素的映射。
    GAN 输入是一个给定的随机噪声生成图像,输出图像通过其他约束条件控制生成。

MindSpore 的 docs 中有详细的说明;
https://gitee.com/mindspore/docs/blob/r2.3.0rc2/tutorials/application/source_zh_cn/generative/pix2pix.ipynb

3. 具体实现:

mindspore 使用 pix2pix 数据;

3.1 数据下载:

# 数据下载
ffrom download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/dataset_pix2pix.tar"download(url, "./dataset", kind="tar", replace=True)

3.2 构造网络

生成器G用到的是U-Net结构,输入的轮廓图 𝑥 编码再解码成真是图片,判别器D用到的是作者自己提出来的条件判别器PatchGAN,判别器D的作用是在轮廓图 𝑥 的条件下,对于生成的图片 𝐺(𝑥) 判断为假,对于真实判断为真。

  • 生成器的 G 结构如下所示:
    使用的是 U-Net 结构
    在这里插入图片描述
  • 定义 UNet Skip Connection Block
import mindspore
import mindspore.nn as nn
import mindspore.ops as opsclass UNetSkipConnectionBlock(nn.Cell):def __init__(self, outer_nc, inner_nc, in_planes=None, dropout=False,submodule=None, outermost=False, innermost=False, alpha=0.2, norm_mode='batch'):super(UNetSkipConnectionBlock, self).__init__()down_norm = nn.BatchNorm2d(inner_nc)up_norm = nn.BatchNorm2d(outer_nc)use_bias = Falseif norm_mode == 'instance':down_norm = nn.BatchNorm2d(inner_nc, affine=False)up_norm = nn.BatchNorm2d(outer_nc, affine=False)use_bias = Trueif in_planes is None:in_planes = outer_ncdown_conv = nn.Conv2d(in_planes, inner_nc, kernel_size=4,stride=2, padding=1, has_bias=use_bias, pad_mode='pad')down_relu = nn.LeakyReLU(alpha)up_relu = nn.ReLU()if outermost:up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,kernel_size=4, stride=2,padding=1, pad_mode='pad')down = [down_conv]up = [up_relu, up_conv, nn.Tanh()]model = down + [submodule] + upelif innermost:up_conv = nn.Conv2dTranspose(inner_nc, outer_nc,kernel_size=4, stride=2,padding=1, has_bias=use_bias, pad_mode='pad')down = [down_relu, down_conv]up = [up_relu, up_conv, up_norm]model = down + upelse:up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,kernel_size=4, stride=2,padding=1, has_bias=use_bias, pad_mode='pad')down = [down_relu, down_conv, down_norm]up = [up_relu, up_conv, up_norm]model = down + [submodule] + upif dropout:model.append(nn.Dropout(p=0.5))self.model = nn.SequentialCell(model)self.skip_connections = not outermostdef construct(self, x):out = self.model(x)if self.skip_connections:out = ops.concat((out, x), axis=1)return out
  • 基于 UNet 的生成器
class UNetGenerator(nn.Cell):def __init__(self, in_planes, out_planes, ngf=64, n_layers=8, norm_mode='bn', dropout=False):super(UNetGenerator, self).__init__()unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=None,norm_mode=norm_mode, innermost=True)for _ in range(n_layers - 5):unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=unet_block,norm_mode=norm_mode, dropout=dropout)unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, in_planes=None, submodule=unet_block,norm_mode=norm_mode)unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, in_planes=None, submodule=unet_block,norm_mode=norm_mode)unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, in_planes=None, submodule=unet_block,norm_mode=norm_mode)self.model = UNetSkipConnectionBlock(out_planes, ngf, in_planes=in_planes, submodule=unet_block,outermost=True, norm_mode=norm_mode)def construct(self, x):return self.model(x)

Pix2Pix在训练和测试时都使用了dropout,这样可以生成多样性的结果。

  • 构建判别器,基于 PatchGAN:
    判别器使用的PatchGAN结构,可看做卷积。生成的矩阵中的每个点代表原图的一小块区域(patch)。通过矩阵中的各个值来判断原图中对应每个Patch的真假。
import mindspore.nn as nnclass ConvNormRelu(nn.Cell):def __init__(self,in_planes,out_planes,kernel_size=4,stride=2,alpha=0.2,norm_mode='batch',pad_mode='CONSTANT',use_relu=True,padding=None):super(ConvNormRelu, self).__init__()norm = nn.BatchNorm2d(out_planes)if norm_mode == 'instance':norm = nn.BatchNorm2d(out_planes, affine=False)has_bias = (norm_mode == 'instance')if not padding:padding = (kernel_size - 1) // 2if pad_mode == 'CONSTANT':conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',has_bias=has_bias, padding=padding)layers = [conv, norm]else:paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))pad = nn.Pad(paddings=paddings, mode=pad_mode)conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', has_bias=has_bias)layers = [pad, conv, norm]if use_relu:relu = nn.ReLU()if alpha > 0:relu = nn.LeakyReLU(alpha)layers.append(relu)self.features = nn.SequentialCell(layers)def construct(self, x):output = self.features(x)return outputclass Discriminator(nn.Cell):def __init__(self, in_planes=3, ndf=64, n_layers=3, alpha=0.2, norm_mode='batch'):super(Discriminator, self).__init__()kernel_size = 4layers = [nn.Conv2d(in_planes, ndf, kernel_size, 2, pad_mode='pad', padding=1),nn.LeakyReLU(alpha)]nf_mult = ndffor i in range(1, n_layers):nf_mult_prev = nf_multnf_mult = min(2 ** i, 8) * ndflayers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))nf_mult_prev = nf_multnf_mult = min(2 ** n_layers, 8) * ndflayers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1))self.features = nn.SequentialCell(layers)def construct(self, x, y):x_y = ops.concat((x, y), axis=1)output = self.features(x_y)return output

3.3 生成器与判别器的初始化

实例化Pix2Pix生成器和判别器

import mindspore.nn as nn
from mindspore.common import initializer as initg_in_planes = 3
g_out_planes = 3
g_ngf = 64
g_layers = 8
d_in_planes = 6
d_ndf = 64
d_layers = 3
alpha = 0.2
init_gain = 0.02
init_type = 'normal'net_generator = UNetGenerator(in_planes=g_in_planes, out_planes=g_out_planes,ngf=g_ngf, n_layers=g_layers)
for _, cell in net_generator.cells_and_names():if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):if init_type == 'normal':cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))elif init_type == 'xavier':cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))elif init_type == 'constant':cell.weight.set_data(init.initializer(0.001, cell.weight.shape))else:raise NotImplementedError('initialization method [%s] is not implemented' % init_type)elif isinstance(cell, nn.BatchNorm2d):cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))cell.beta.set_data(init.initializer('zeros', cell.beta.shape))net_discriminator = Discriminator(in_planes=d_in_planes, ndf=d_ndf,alpha=alpha, n_layers=d_layers)
for _, cell in net_discriminator.cells_and_names():if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):if init_type == 'normal':cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))elif init_type == 'xavier':cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))elif init_type == 'constant':cell.weight.set_data(init.initializer(0.001, cell.weight.shape))else:raise NotImplementedError('initialization method [%s] is not implemented' % init_type)elif isinstance(cell, nn.BatchNorm2d):cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))cell.beta.set_data(init.initializer('zeros', cell.beta.shape))class Pix2Pix(nn.Cell):"""Pix2Pix模型网络"""def __init__(self, discriminator, generator):super(Pix2Pix, self).__init__(auto_prefix=True)self.net_discriminator = discriminatorself.net_generator = generatordef construct(self, reala):fakeb = self.net_generator(reala)return fakeb

3.4 训练

训练判别器和训练生成器。训练判别器的目的是最大程度地提高判别图像真伪的概率。训练生成器是希望能产生更好的虚假图像。在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计。

  • 损失函数:
    定义了 Generator 和 Discriminator 后,损失函数使用MindSpore中二进制交叉熵损失函数BCELoss ;这里生成器和判别器都是使用Adam优化器。
import numpy as np
import os
import datetime
from mindspore import value_and_grad, Tensorepoch_num = 3
ckpt_dir = "results/ckpt"
dataset_size = 400
val_pic_size = 256
lr = 0.0002
n_epochs = 100
n_epochs_decay = 100def get_lr():lrs = [lr] * dataset_size * n_epochslr_epoch = 0for epoch in range(n_epochs_decay):lr_epoch = lr * (n_epochs_decay - epoch) / n_epochs_decaylrs += [lr_epoch] * dataset_sizelrs += [lr_epoch] * dataset_size * (epoch_num - n_epochs_decay - n_epochs)return Tensor(np.array(lrs).astype(np.float32))dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True, num_parallel_workers=1)
steps_per_epoch = dataset.get_dataset_size()
loss_f = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()def forword_dis(reala, realb):lambda_dis = 0.5fakeb = net_generator(reala)pred0 = net_discriminator(reala, fakeb)pred1 = net_discriminator(reala, realb)loss_d = loss_f(pred1, ops.ones_like(pred1)) + loss_f(pred0, ops.zeros_like(pred0))loss_dis = loss_d * lambda_disreturn loss_disdef forword_gan(reala, realb):lambda_gan = 0.5lambda_l1 = 100fakeb = net_generator(reala)pred0 = net_discriminator(reala, fakeb)loss_1 = loss_f(pred0, ops.ones_like(pred0))loss_2 = l1_loss(fakeb, realb)loss_gan = loss_1 * lambda_gan + loss_2 * lambda_l1return loss_gand_opt = nn.Adam(net_discriminator.trainable_params(), learning_rate=get_lr(),beta1=0.5, beta2=0.999, loss_scale=1)
g_opt = nn.Adam(net_generator.trainable_params(), learning_rate=get_lr(),beta1=0.5, beta2=0.999, loss_scale=1)grad_d = value_and_grad(forword_dis, None, net_discriminator.trainable_params())
grad_g = value_and_grad(forword_gan, None, net_generator.trainable_params())def train_step(reala, realb):loss_dis, d_grads = grad_d(reala, realb)loss_gan, g_grads = grad_g(reala, realb)d_opt(d_grads)g_opt(g_grads)return loss_dis, loss_ganif not os.path.isdir(ckpt_dir):os.makedirs(ckpt_dir)g_losses = []
d_losses = []
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=epoch_num)for epoch in range(epoch_num):for i, data in enumerate(data_loader):start_time = datetime.datetime.now()input_image = Tensor(data["input_images"])target_image = Tensor(data["target_images"])dis_loss, gen_loss = train_step(input_image, target_image)end_time = datetime.datetime.now()delta = (end_time - start_time).microsecondsif i % 2 == 0:print("ms per step:{:.2f}  epoch:{}/{}  step:{}/{}  Dloss:{:.4f}  Gloss:{:.4f} ".format((delta / 1000), (epoch + 1), (epoch_num), i, steps_per_epoch, float(dis_loss), float(gen_loss)))d_losses.append(dis_loss.asnumpy())g_losses.append(gen_loss.asnumpy())if (epoch + 1) == epoch_num:mindspore.save_checkpoint(net_generator, ckpt_dir + "Generator.ckpt")

3.5 推理

获取上述训练过程完成后的ckpt文件,通过load_checkpoint和load_param_into_net将ckpt中的权重参数导入到模型中,获取数据进行推理并对推理的效果图进行演示(由于时间问题,训练过程只进行了3个epoch,可根据需求调整epoch)

from mindspore import load_checkpoint, load_param_into_netparam_g = load_checkpoint(ckpt_dir + "Generator.ckpt")
load_param_into_net(net_generator, param_g)
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator())
predict_show = net_generator(data_iter["input_images"])
plt.figure(figsize=(10, 3), dpi=140)
for i in range(10):plt.subplot(2, 10, i + 1)plt.imshow((data_iter["input_images"][i].asnumpy().transpose(1, 2, 0) + 1) / 2)plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)plt.subplot(2, 10, i + 11)plt.imshow((predict_show[i].asnumpy().transpose(1, 2, 0) + 1) / 2)plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()

4. 相关链接:

  • https://xihe.mindspore.cn/events/mindspore-training-camp
  • [1] Phillip Isola,Jun-Yan Zhu,Tinghui Zhou,Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks.[J]. CoRR,2016,abs/1611.07004. https://arxiv.org/pdf/1611.07004

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 50、PHP 实现选择排序
  • 分布式锁的三种实现方式:Redis、基于数据库和Zookeeper
  • C#:枚举及位标志周边知识详解(小白入门)
  • Kafka知识总结(选举机制+控制器+幂等性)
  • 在 Elasticsearch 中实现采集自动扩展
  • Python urllib请求https接口报错
  • python异步编程,协程
  • java中的函数式接口介绍
  • python inf是什么意思
  • Centos安装、迁移gitlab
  • 数据透视——判别分析
  • 刷新历史新高后又大跌!剖析黄金现在适合投资吗?
  • 编程的魅力、学习路径、应用领域以及对未来的影响
  • docker笔记5-数据卷
  • vue2根据选中的日期动态渲染表格的列
  • 收藏网友的 源程序下载网
  • (ckeditor+ckfinder用法)Jquery,js获取ckeditor值
  • 「面试题」如何实现一个圣杯布局?
  • 【跃迁之路】【444天】程序员高效学习方法论探索系列(实验阶段201-2018.04.25)...
  • Akka系列(七):Actor持久化之Akka persistence
  • android高仿小视频、应用锁、3种存储库、QQ小红点动画、仿支付宝图表等源码...
  • Android优雅地处理按钮重复点击
  • css系列之关于字体的事
  • echarts花样作死的坑
  • Fundebug计费标准解释:事件数是如何定义的?
  • input的行数自动增减
  • JAVA之继承和多态
  • Netty 框架总结「ChannelHandler 及 EventLoop」
  • Python_网络编程
  • React 快速上手 - 06 容器组件、展示组件、操作组件
  • SegmentFault 社区上线小程序开发频道,助力小程序开发者生态
  • Selenium实战教程系列(二)---元素定位
  • Spark学习笔记之相关记录
  • Vue官网教程学习过程中值得记录的一些事情
  • WebSocket使用
  • 反思总结然后整装待发
  • 老板让我十分钟上手nx-admin
  • 首页查询功能的一次实现过程
  • 详解NodeJs流之一
  • 1.Ext JS 建立web开发工程
  • Android开发者必备:推荐一款助力开发的开源APP
  • 组复制官方翻译九、Group Replication Technical Details
  • #1015 : KMP算法
  • #pragma multi_compile #pragma shader_feature
  • #中的引用型是什么意识_Java中四种引用有什么区别以及应用场景
  • (16)UiBot:智能化软件机器人(以头歌抓取课程数据为例)
  • (21)起落架/可伸缩相机支架
  • (附源码)springboot家庭财务分析系统 毕业设计641323
  • (附源码)计算机毕业设计SSM疫情居家隔离服务系统
  • (力扣)循环队列的实现与详解(C语言)
  • (删)Java线程同步实现一:synchronzied和wait()/notify()
  • (一)SpringBoot3---尚硅谷总结
  • .[hudsonL@cock.li].mkp勒索病毒数据怎么处理|数据解密恢复
  • .bat批处理(四):路径相关%cd%和%~dp0的区别
  • .NET CF命令行调试器MDbg入门(四) Attaching to Processes