当前位置: 首页 > news >正文

STM32-门电路-储存器-寄存器-STM32f1-MCU-GPIO-总线-keil5-点led

1、门电路





门电路组成简单加法器:

二进制对电路的影响:

0和1代表无和有;

以下图例,演示与门:左1右1输出1;

电平标准:使用不同的电压表示数字0和1;

高电平:1;

低电平:0;

CMOS标准:3.3v标准;

TTL标准:

储存器:

RAM:随机储存器;ROM:只读储存器;

运算器:加法器,寄存器;

单片机编程可以理解为寄存器编程;

特殊功能的寄存器SFR:

        控制外设,中断,定时/计数等功能;

程序状态寄存器(PSW):

        存放ALU(算数逻辑单元)的操作状态特征,进位标志、溢出标志等;

堆栈指针寄存器(SP):

        指示堆栈顶部位置,支持堆栈操作实现;

数据指针寄存器(DPTR):

        通常是16位,用于储存数据存储器或程序储存器的地址信息,支持间接寻址操作;

中断允许寄存器(IE)和中断优先级寄存器(IP):

        管理和控制中断请求,包括中断的允许,禁止,优先级设置;

定时/计数寄存器:

        测量时间间隔、周期和频率;

I/O端口寄存器(p0,p1,p2,p3):

        用于控制单片机的输入输出端口,包括端口的方向设置,输出状态的读取和写入以及输入状态的读取操作;

要操作GPIO,就要操作能影响GPIO的寄存器,给SFR一个固定的值来操作寄存器,还要搞清楚GPIO的地址;

控制器:

        程序计数器PC,指令寄存器IR,指令译码器ID,时许控制电路;

运算器+控制器 = 中央处理器(CPU);

认识STM32F1:

        32位微控制器;

MCU:微控制单元--单片机

        控制:(了解)

单片机的作用,优势(低功耗,成本,性能)

学习stm32目标:

直接控制功能模块(单片机外设);

主控芯片--子芯片(主控芯片通过单片机通信协议分发任务给子芯片(单片机协议))

目标:

        学外设:GPIO TIM USART ADC

        学外设组合使用:

        学特殊机制:中断,协议(协议匹配)

了解单片机的命名规则(以STM32F103C8T6A为例子):

C:44引脚;8表示64kb闪存;

了解闪存:

闪存(Flash Memory)是一种非易失性存储器,它允许数据在断电后仍然保留,并且可以被多次擦除和写入。以下是关于闪存的详细介绍:

  • 定义:闪存是一种电子式可清除程序化只读存储器的形式,它能够在断电后保持数据不丢失。
  • 特征:长寿命的非易失性,即数据在断电后仍能长时间保存。

 闪存存放烧录的代码;

了解GPIO:

General Purpose Input/Output,通用输入输出接口

通过数据手册查看电平标准;电气特性;IO端口特性等信息;

通用输出:

高电平2.4-3.6

低电平-0.4-0.5

共地:

点灯--输出--proteus(仿真平台)


了解影响GPIO的寄存器(SFR):

通过寄存器地址对寄存器的赋值操作对应的位,来影响GPIO;

每一组GPIO都有独立的寄存器;

每个IO端口可以自由编程,来配置不同的模式;

一个io端口位的基本结构:

推挽模式和开漏模式:

        MOS管结构:

推挽模式:

推挽模式下:P-MOS管和N-MOS管都打开,当输出数据寄存器输出高电平1时,经过输出控制(输出控制取反),P-MOS的N-MOS的G极都是低电平,VDD是高电平,Vss是低电平,此时只有P-MOS导通,IO引脚为高电平,外接低电平导通,表现为推;反之:当输出数据寄存器输出低电平0时,经过输出控制(输出控制取反),P-MOS的N-MOS的G极都是高电平,VDD是高电平,Vss是低电平,此时只有N-MOS导通,IO引脚为低电平,外接高电平导通,表现为挽;

开漏模式:

开漏模式下:P-MOS管关闭,输出数据寄存器为高电平1时,经过输出控制变成低电平,此时N-MOS管表现为不导通,此时的io引脚表现为高阻态;当输出数据寄存器为低电平0时,经过输出控制变成高电平,此时N-MOS管表现为导通,IO引脚为低电平,若外接电路,可以通过输出控制外接电路的导通与短路;以灯泡为例;

仿真平台proteus:

创建工程的选项:

1、选择芯片型号:

2、选择软件组件:

        1、添加元器件:选择元器件模式,按P,进入选择元器件模式的选择页面,有搜索框可以直接搜索

2、选择终端模式:选择终端模式,选到POWER,可以选择供电;

3、连接电路:

PAI:16个引脚为一组;编号0-15;

4、点击stm32芯片设置代码源文件和晶振频率;

5、配置供电网:

给VCC/VDD配置:(高电平)

给GND配置:(低电平)

了解GPIO的使用:

1、找寄存器地址:

        寄存器的地址:

                偏移地址:寄存器的详细描述;

                基地址:基地址范围的左边地址

通过基地址加上偏移地址的形式找到寄存器;

        

2、通过寄存器的赋值操作寄存器的工作模式:

四个位控制一个引脚,一共16个引脚,需要64位,一个寄存器32位所以需要两个寄存器;

寄存器:

端口配置低寄存器(GPIOxCRL)

[3-0] = 0001;

端口输出数据寄存器(GPIO)

3、使能和失能:

失能:失能是MCU(微控制单元)的默认模式,该模式基于低能耗的原则,保证设备是处于关闭状态,来达到低耗能的目的;

使能:使能是MCU的供能模式,通过对使能寄存器的赋值操作改变模式,使其从失能模式变为使能模式,从而启动MCU的模式;

要让其他寄存器运行需要先把使能寄存器设置为使能模式

外设挂载在外设上;通过APB2操作外设使能寄存器;

RCC基地址+偏移量操作寄存器;

了解代码编辑平台keil5:

1、设置编码格式:

2、设置生成HEX File

了解总线:

系统总线(System Bus)是计算机系统中一个至关重要的组件,它作为连接计算机系统主要部件的桥梁,承担着数据传输、地址指定和控制信号传输等多重任务。以下是关于系统总线的详细解析:

一、系统总线的定义与功能

系统总线是一个单独的计算机总线,用于连接计算机系统的主要组件,如CPU、内存和输入输出接口等。其主要功能包括:

  • 数据传输:通过数据总线(Data Bus,DB)实现CPU与存储器、输入输出接口等部件之间的数据交换。
  • 地址指定:通过地址总线(Address Bus,AB)确定数据传输的目的地,即指定CPU访问的存储单元或外设的地址。
  • 控制信号传输:通过控制总线(Control Bus,CB)传输各种控制信号和时序信号,协调各部件之间的操作。

二、系统总线的分类

系统总线按照传递信息的功能来分,主要分为以下三类:

  1. 控制总线(Control Bus,CB)
    • 主要用来传送控制信号和时序信号。
    • 控制信号包括读/写信号、片选信号、中断响应信号等,也有来自其他部件的反馈信号,如中断申请信号、复位信号等。
    • 控制总线的传送方向通常是双向的,其位数根据系统的实际控制需要而定。
  2. 数据总线(Data Bus,DB)
    • 是双向三态形式的总线,用于CPU与存储器、输入输出接口等部件之间的数据交换。
    • 数据总线的位数是微型计算机的一个重要指标,通常与微处理器的字长相一致。
    • 数据总线上传输的数据可以是真正的数据、指令代码、状态信息或控制信息。
  3. 地址总线(Address Bus,AB)
    • 由CPU或有DMA(直接内存访问)能力的单元使用,用于沟通这些单元想要存取(读取/写入)的内存地址。
    • 地址总线的宽度决定了系统能够访问的内存空间大小。

三、系统总线的作用与特点

  • 作用:系统总线在微型计算机中扮演着类似于人体神经中枢的角色,通过它将CPU、内存、输入输出接口等部件紧密地连接在一起,实现了计算机内部各部件之间的信息交换和协同工作。
  • 特点
    • 模块化:系统总线的开发促进了计算机系统的模块化设计,使得计算机系统的扩展和升级变得更加容易。
    • 高效性:通过系统总线传输数据和控制信号,可以大大提高计算机系统的数据传输速率和整体性能。
    • 灵活性:系统总线的设计使得人们可以根据自己的需要,将不同规模和类型的内存和接口接到系统总线上,形成各种规模的微型计算机。

1、时钟:

仿真:没有加外部时钟电路,使用内部时钟振荡器产生的时钟信号;

不仿真:来自晶振;

晶振时钟(Crystal Oscillator Clock)

晶振时钟是指通过晶体振荡器产生的稳定时钟信号。晶体振荡器是一种能够产生高精度、高稳定度频率的电子元件,它利用石英晶体的压电效应,在外部电路的作用下产生稳定的振荡频率。这个频率通常被用作系统的基准时钟源,因为它具有极高的稳定性和准确性。

在大多数计算机和嵌入式系统中,CPU和其他关键组件的时钟信号都是由晶振提供的。晶振产生的时钟信号经过分频、倍频等处理后,可以生成不同频率的时钟信号,以满足系统不同部分的需求。

系统时钟(System Clock)

系统时钟是一个更广泛的概念,它指的是整个系统内部用于同步和驱动各种操作的时钟信号。在计算机系统或嵌入式系统中,系统时钟可能由多个时钟源组成,但其中最重要的是由晶振产生的基准时钟信号。

系统时钟不仅用于CPU的执行,还用于控制外设的通信速率、管理中断和异常、记录系统时间等。系统时钟的准确性和稳定性对系统的整体性能和可靠性至关重要。

两者之间的关系

  • 晶振时钟是系统时钟的基础:在大多数系统中,系统时钟的基准信号是由晶振产生的。晶振的高稳定性和准确性保证了系统时钟的可靠性。
  • 系统时钟是晶振时钟的扩展和应用:系统时钟不仅包含了晶振产生的基准信号,还包含了经过处理后的各种时钟信号,这些信号被用于系统的各个部分。

时钟来自系统时钟(晶振时钟),系统时钟分给AHB总线,AHB总线分给APB总线;

编写STM32代码:

通过宏定义找到寄存器,基地址+偏移地址

对寄存器赋值,通过取反操作,与或非的操作来达到对寄存器固定位置的赋值;从而使得寄存器处于特定的模式对引脚输出不同的电平;达到控制电路的目的;

while(1):防止跑飞,使得单片机内部一直跑这个代码;

单片机内部暂时没有操作系统,所以编写c代码不用return;

设置GPIO某个引脚输出高低电平的步骤:

1、使能GPIO(RCC)

因为GPIO挂载在APB2这一条数据总线上,所以要通过APB2使能GPIO;因为LED挂载于IO端口A;所以IO端口A置1写使能;

2、设置通用推挽输出,10Mhz(工作模式)(CRL)

3、操作端口输出寄存器;(ODR)

案例1:通过设置推挽中的挽,时LED点亮;

仿真proteus结果:

设施端口输出寄存器输出1;

#define GPIOA_CRL *(int *) (0x40010800 + 0x00)#define GPIOA_ODR *(int *) (0x40010800 + 0x0c)#define RCC_APB2ENR *(int *) (0x40021000 + 0x18)int main(){//GPIO --失能Disable  --低功耗;默认失能;//使能GPIO-- Enable--才能正常工作,也会开始消耗电能;RCC_APB2ENR |= (0x01 << 2);//第二位置1;//设置PA0 --通用推挽输出,10Mhz输出速度;GPIOA_CRL &= ~(0xf << 0);//0GPIOA_CRL |= (0x01 <<0);//输出低电平 第0位清零GPIOA_ODR &=~(0x01 <<0);while(1);
}

案例2:

 操作端口2

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 惠普澄清供应链转移传闻:中国在全球布局中扮演核心角色
  • Vuforia AR篇(九)— AR塔防下篇
  • 简单分享下python打包手机app的apk
  • 【C++】初识面向对象:类与对象详解
  • 十八.核心动画 - 使用CAGradientLayer图层构建渐变视图
  • 用Python在Word文档中创建和执行条件邮件合并
  • bootstrap之表格
  • module ‘pkgutil‘ has no attribute ‘ImpImporter‘. Did you mean: ‘zipimporter‘?
  • javascript:检测图片的宽高
  • 社交及时通讯平台完整版源码,uniapp技术,可打包成app
  • QEMU理解与分析系列(1):QEMU简介
  • Flutter 电视投屏模块
  • 单例模式(java)
  • jupyter notebook魔法命令
  • Phpstorm实现本地SSH开发远程机器(或虚拟机)项目
  • 《剑指offer》分解让复杂问题更简单
  • 08.Android之View事件问题
  • 30秒的PHP代码片段(1)数组 - Array
  • Angular 4.x 动态创建组件
  • CentOS学习笔记 - 12. Nginx搭建Centos7.5远程repo
  • GDB 调试 Mysql 实战(三)优先队列排序算法中的行记录长度统计是怎么来的(上)...
  • JavaScript 奇技淫巧
  • JavaScript异步流程控制的前世今生
  • Mocha测试初探
  • Otto开发初探——微服务依赖管理新利器
  • Redis字符串类型内部编码剖析
  • Webpack入门之遇到的那些坑,系列示例Demo
  • 编写高质量JavaScript代码之并发
  • 二维平面内的碰撞检测【一】
  • 关于使用markdown的方法(引自CSDN教程)
  • 基于遗传算法的优化问题求解
  • 计算机在识别图像时“看到”了什么?
  • 微信开放平台全网发布【失败】的几点排查方法
  • nb
  • 你对linux中grep命令知道多少?
  • k8s使用glusterfs实现动态持久化存储
  • ​云纳万物 · 数皆有言|2021 七牛云战略发布会启幕,邀您赴约
  • # 详解 JS 中的事件循环、宏/微任务、Primise对象、定时器函数,以及其在工作中的应用和注意事项
  • #免费 苹果M系芯片Macbook电脑MacOS使用Bash脚本写入(读写)NTFS硬盘教程
  • #中的引用型是什么意识_Java中四种引用有什么区别以及应用场景
  • ( 10 )MySQL中的外键
  • (13)Hive调优——动态分区导致的小文件问题
  • (152)时序收敛--->(02)时序收敛二
  • (HAL)STM32F103C6T8——软件模拟I2C驱动0.96寸OLED屏幕
  • (poj1.3.2)1791(构造法模拟)
  • (动态规划)5. 最长回文子串 java解决
  • (翻译)Quartz官方教程——第一课:Quartz入门
  • (力扣)1314.矩阵区域和
  • (十六)Flask之蓝图
  • (十五)devops持续集成开发——jenkins流水线构建策略配置及触发器的使用
  • (贪心) LeetCode 45. 跳跃游戏 II
  • (原)本想说脏话,奈何已放下
  • (转) 深度模型优化性能 调参
  • (最优化理论与方法)第二章最优化所需基础知识-第三节:重要凸集举例
  • ****三次握手和四次挥手