当前位置: 首页 > news >正文

第R2周:Pytorch实现:LSTM-火灾温度预测

nn.LSTM() 函数详解
nn.LSTM 是 PyTorch 中用于创建长短期记忆(Long Short-Term Memory,LSTM)模型的类。LSTM 是一种循环神经网络(Recurrent Neural Network,RNN)的变体,用于处理序列数据,能够有效地捕捉长期依赖关系。

语法

torch.nn.LSTM(input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=False)

●input_size: 输入特征的维度。
●hidden_size: 隐藏状态的维度,也是输出特征的维度。
●num_layers(可选参数): LSTM 层的数量,默认为 1。
●bias(可选参数): 是否使用偏置,默认为 True。
●batch_first(可选参数): 如果为 True,则输入和输出张量的形状为 (batch_size, seq_len, feature_size),默认为 False。
●dropout(可选参数): 如果非零,将在 LSTM 层的输出上应用 dropout,防止过拟合。默认为 0。
●bidirectional(可选参数): 如果为 True,则使用双向 LSTM,输出维度将翻倍。默认为 False。

示例

import torch
import torch.nn as nn# 定义一个单向 LSTM 模型
input_size  = 10
hidden_size = 20
num_layers  = 2
batch_size  = 3
seq_len     = 5lstm = nn.LSTM(input_size, hidden_size, num_layers)# 构造一个输入张量
input_tensor = torch.randn(seq_len, batch_size, input_size)# 初始化隐藏状态和细胞状态
h0 = torch.randn(num_layers, batch_size, hidden_size)
c0 = torch.randn(num_layers, batch_size, hidden_size)# 将输入传递给 LSTM 模型
output, (hn, cn) = lstm(input_tensor, (h0, c0))print("Output shape:", output.shape)    # 输出特征的形状
print("Hidden state shape:", hn.shape)  # 最后一个时间步的隐藏状态的形状
print("Cell state shape:", cn.shape)    # 最后一个时间步的细胞状态的形状

代码输出

Output shape: torch.Size([5, 3, 20])
Hidden state shape: torch.Size([2, 3, 20])
Cell state shape: torch.Size([2, 3, 20])

注意事项

●input_size 指定了输入数据的特征维度,hidden_size 指定了 LSTM 层的隐藏状态维度,num_layers 指定了 LSTM 的层数。
●LSTM 的输入张量的形状通常是 (seq_len, batch_size, input_size),但如果设置了 batch_first=True,则形状为 (batch_size, seq_len, input_size)。
●LSTM 的输出包括输出张量和最后一个时间步的隐藏状态和细胞状态。
●可以通过 bidirectional=True 参数创建双向 LSTM,它会将输入序列分别从前向和后向传播,并将两个方向的隐藏状态拼接在一起作为输出。
●在使用 LSTM 时,通常需要注意输入数据的序列长度,以及是否需要对输入数据进行填充或截断,以保证输入数据的长度是一致的。

要求:
1.了解LSTM是什么,并使用其构建一个完整的程序
2.R2达到0.83

拔高:
1.使用第1 ~ 8个时刻的数据预测第9 ~ 10个时刻的温度数据

我的环境:
●语言环境:Python3.8
●编译器:Jupyter Lab
●深度学习框架:torch 1.10.2 (cpu)
●数据:火灾温度数据集

一、前期准备工作

import torch.nn.functional as F
import numpy  as np
import pandas as pd
import torch
from torch    import nn
  1. 导入数据
data = pd.read_csv("./R2/woodpine2.csv")data

代码输出

TimeTem1CO 1Soot 1
00.00025.00.0000000.000000
10.22825.00.0000000.000000
20.45625.00.0000000.000000
30.68525.00.0000000.000000
40.91325.00.0000000.000000
...............
5943366.000295.00.0000770.000496
5944366.000294.00.0000770.000494
5945367.000292.00.0000770.000491
5946367.000291.00.0000760.000489
5947367.000290.00.0000760.000487

5948 rows × 4 columns

  1. 数据集可视化
import matplotlib.pyplot as plt
import seaborn as snsplt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率fig, ax =plt.subplots(1,3,constrained_layout=True, figsize=(14, 3))sns.lineplot(data=data["Tem1"], ax=ax[0])
sns.lineplot(data=data["CO 1"], ax=ax[1])
sns.lineplot(data=data["Soot 1"], ax=ax[2])
plt.show()

代码输出
在这里插入图片描述

dataFrame = data.iloc[:,1:]dataFrame

代码输出

Tem1CO 1Soot 1
025.00.0000000.000000
125.00.0000000.000000
225.00.0000000.000000
325.00.0000000.000000
425.00.0000000.000000
............
5943295.00.0000770.000496
5944294.00.0000770.000494
5945292.00.0000770.000491
5946291.00.0000760.000489
5947290.00.0000760.000487

5948 rows × 3 columns

二、构建数据集

  1. 数据集预处理
from sklearn.preprocessing import MinMaxScalerdataFrame = data.iloc[:,1:].copy()
sc  = MinMaxScaler(feature_range=(0, 1)) #将数据归一化,范围是0到1for i in ['CO 1', 'Soot 1', 'Tem1']:dataFrame[i] = sc.fit_transform(dataFrame[i].values.reshape(-1, 1))dataFrame.shape

代码输出

(5948, 3)
  1. 设置X、y
width_X = 8
width_y = 1##取前8个时间段的Tem1、CO 1、Soot 1为X,第9个时间段的Tem1为y。
X = []
y = []in_start = 0for _, _ in data.iterrows():in_end  = in_start + width_Xout_end = in_end   + width_yif out_end < len(dataFrame):X_ = np.array(dataFrame.iloc[in_start:in_end , ])y_ = np.array(dataFrame.iloc[in_end  :out_end, 0])X.append(X_)y.append(y_)in_start += 1X = np.array(X)
y = np.array(y).reshape(-1,1,1)X.shape, y.shape

代码输出

((5939, 8, 3), (5939, 1, 1))

检查数据集中是否有空值

print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

代码输出

False
False
  1. 划分数据集
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch.float32)X_test  = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test  = torch.tensor(np.array(y[5000:]), dtype=torch.float32)
X_train.shape, y_train.shape

代码输出

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 1]))
from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train),batch_size=64, shuffle=False)test_dl  = DataLoader(TensorDataset(X_test, y_test),batch_size=64, shuffle=False)

三、模型训练

  1. 构建模型
class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=3 ,hidden_size=320, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=320 ,hidden_size=320, num_layers=1, batch_first=True)self.fc0   = nn.Linear(320, 1)def forward(self, x):out, hidden1 = self.lstm0(x) out, _ = self.lstm1(out, hidden1) out    = self.fc0(out) return out[:, -1:, :]   #取2个预测值,否则经过lstm会得到8*2个预测model = model_lstm()
model

代码输出

model_lstm((lstm0): LSTM(3, 320, batch_first=True)(lstm1): LSTM(320, 320, batch_first=True)(fc0): Linear(in_features=320, out_features=1, bias=True)
)

让我们看看模型的输出数据集格式是什么

model(torch.rand(30,8,3)).shape

代码输出

torch.Size([30, 1, 1])
  1. 定义训练函数
# 训练循环
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None):size        = len(train_dl.dataset)  num_batches = len(train_dl)   train_loss  = 0  # 初始化训练损失和正确率for x, y in train_dl:  x, y = x.to(device), y.to(device)# 计算预测误差pred = model(x)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距# 反向传播opt.zero_grad()  # grad属性归零loss.backward()  # 反向传播opt.step()       # 每一步自动更新# 记录losstrain_loss += loss.item()if lr_scheduler is not None:lr_scheduler.step()print("learning rate = {:.5f}".format(opt.param_groups[0]['lr']), end="  ")train_loss /= num_batchesreturn train_loss
  1. 定义测试函数
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目test_loss   = 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for x, y in dataloader:x, y = x.to(device), y.to(device)# 计算lossy_pred = model(x)loss        = loss_fn(y_pred, y)test_loss += loss.item()test_loss /= num_batchesreturn test_loss
  1. 正式训练模型
#设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

代码输出

device(type='cpu')
#训练模型
model = model_lstm()
model = model.to(device)
loss_fn    = nn.MSELoss() # 创建损失函数
learn_rate = 1e-1   # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate,weight_decay=1e-4)
epochs     = 50
train_loss = []
test_loss  = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt,epochs, last_epoch=-1) for epoch in range(epochs):model.train()epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)model.eval()epoch_test_loss = test(test_dl, model, loss_fn)train_loss.append(epoch_train_loss)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_loss:{:.5f}, Test_loss:{:.5f}')print(template.format(epoch+1, epoch_train_loss,  epoch_test_loss))print("="*20, 'Done', "="*20)
learning rate = 0.09990  Epoch: 1, Train_loss:0.00131, Test_loss:0.01248
learning rate = 0.09961  Epoch: 2, Train_loss:0.01448, Test_loss:0.01209
learning rate = 0.09911  Epoch: 3, Train_loss:0.01415, Test_loss:0.01168
learning rate = 0.09843  Epoch: 4, Train_loss:0.01377, Test_loss:0.01124
learning rate = 0.09755  Epoch: 5, Train_loss:0.01334, Test_loss:0.01074
learning rate = 0.09649  Epoch: 6, Train_loss:0.01283, Test_loss:0.01019
learning rate = 0.09524  Epoch: 7, Train_loss:0.01222, Test_loss:0.00956
learning rate = 0.09382  Epoch: 8, Train_loss:0.01150, Test_loss:0.00886
learning rate = 0.09222  Epoch: 9, Train_loss:0.01067, Test_loss:0.00810
learning rate = 0.09045  Epoch:10, Train_loss:0.00972, Test_loss:0.00727
learning rate = 0.08853  Epoch:11, Train_loss:0.00867, Test_loss:0.00640
learning rate = 0.08645  Epoch:12, Train_loss:0.00754, Test_loss:0.00552
learning rate = 0.08423  Epoch:13, Train_loss:0.00638, Test_loss:0.00467
learning rate = 0.08187  Epoch:14, Train_loss:0.00523, Test_loss:0.00387
learning rate = 0.07939  Epoch:15, Train_loss:0.00417, Test_loss:0.00316
learning rate = 0.07679  Epoch:16, Train_loss:0.00322, Test_loss:0.00255
learning rate = 0.07409  Epoch:17, Train_loss:0.00242, Test_loss:0.00205
learning rate = 0.07129  Epoch:18, Train_loss:0.00178, Test_loss:0.00166
learning rate = 0.06841  Epoch:19, Train_loss:0.00129, Test_loss:0.00136
learning rate = 0.06545  Epoch:20, Train_loss:0.00093, Test_loss:0.00113
learning rate = 0.06243  Epoch:21, Train_loss:0.00067, Test_loss:0.00097
learning rate = 0.05937  Epoch:22, Train_loss:0.00049, Test_loss:0.00085
learning rate = 0.05627  Epoch:23, Train_loss:0.00036, Test_loss:0.00077
learning rate = 0.05314  Epoch:24, Train_loss:0.00028, Test_loss:0.00071
learning rate = 0.05000  Epoch:25, Train_loss:0.00022, Test_loss:0.00066
learning rate = 0.04686  Epoch:26, Train_loss:0.00018, Test_loss:0.00063
learning rate = 0.04373  Epoch:27, Train_loss:0.00016, Test_loss:0.00060
learning rate = 0.04063  Epoch:28, Train_loss:0.00014, Test_loss:0.00058
learning rate = 0.03757  Epoch:29, Train_loss:0.00013, Test_loss:0.00057
learning rate = 0.03455  Epoch:30, Train_loss:0.00012, Test_loss:0.00056
learning rate = 0.03159  Epoch:31, Train_loss:0.00012, Test_loss:0.00055
learning rate = 0.02871  Epoch:32, Train_loss:0.00011, Test_loss:0.00054
learning rate = 0.02591  Epoch:33, Train_loss:0.00011, Test_loss:0.00054
learning rate = 0.02321  Epoch:34, Train_loss:0.00011, Test_loss:0.00053
learning rate = 0.02061  Epoch:35, Train_loss:0.00011, Test_loss:0.00053
learning rate = 0.01813  Epoch:36, Train_loss:0.00012, Test_loss:0.00053
learning rate = 0.01577  Epoch:37, Train_loss:0.00012, Test_loss:0.00053
learning rate = 0.01355  Epoch:38, Train_loss:0.00012, Test_loss:0.00054
learning rate = 0.01147  Epoch:39, Train_loss:0.00012, Test_loss:0.00054
learning rate = 0.00955  Epoch:40, Train_loss:0.00013, Test_loss:0.00055
learning rate = 0.00778  Epoch:41, Train_loss:0.00013, Test_loss:0.00055
learning rate = 0.00618  Epoch:42, Train_loss:0.00013, Test_loss:0.00056
learning rate = 0.00476  Epoch:43, Train_loss:0.00014, Test_loss:0.00056
learning rate = 0.00351  Epoch:44, Train_loss:0.00014, Test_loss:0.00057
learning rate = 0.00245  Epoch:45, Train_loss:0.00014, Test_loss:0.00057
learning rate = 0.00157  Epoch:46, Train_loss:0.00014, Test_loss:0.00057
learning rate = 0.00089  Epoch:47, Train_loss:0.00014, Test_loss:0.00057
learning rate = 0.00039  Epoch:48, Train_loss:0.00014, Test_loss:0.00057
learning rate = 0.00010  Epoch:49, Train_loss:0.00014, Test_loss:0.00057
learning rate = 0.00000  Epoch:50, Train_loss:0.00014, Test_loss:0.00057
==================== Done ====================

四、模型评估

  1. LOSS图
import matplotlib.pyplot as pltplt.figure(figsize=(5, 3),dpi=120)plt.plot(train_loss    , label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')plt.title('Training and Validation Loss')
plt.legend()
plt.show()

代码输出
在这里插入图片描述

  1. 调用模型进行预测
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))                    # 测试集输入模型进行预测
y_test_1         = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one       = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]plt.figure(figsize=(5, 3),dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')plt.title('Title')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

代码输出在这里插入图片描述

  1. R2值评估
from sklearn import metrics
"""
RMSE :均方根误差  ----->  对均方误差开方
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
"""
RMSE_lstm  = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm    = metrics.r2_score(predicted_y_lstm_one, y_test_1)print('均方根误差: %.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

代码输出

均方根误差: 6.77961
R2: 0.84096

五、拔高尝试

使用第1 ~ 8个时刻的数据预测第 9 ~10个时刻的温度数据,实际上也是把原来的单步预测修改为多步预测,主要改动部分在模型输出部分,再添加预测代码。

将model_lstm的“return out[:, -1:, :]”修改为“return out[:, -2:, :]”,就修改一个地方。

class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=3 ,hidden_size=320, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=320 ,hidden_size=320, num_layers=1, batch_first=True)self.fc0   = nn.Linear(320, 1)def forward(self, x):out, hidden1 = self.lstm0(x) out, _ = self.lstm1(out, hidden1) out    = self.fc0(out) #return out[:, -1:, :]   #取2个预测值,否则经过lstm会得到8*2个预测#将return out[:, -1:, :]修改如下,就修改一个地方return out[:, -2:, :]   model = model_lstm()
model

添加预测代码

#拔高练习
test_1 = torch.tensor(dataFrame.iloc[:8 , ].values,dtype=torch.float32).reshape(1,-1,3)
pred_ = model(test_1)
pred_ = np.round(sc.inverse_transform(pred_.detach().numpy().reshape(1,-1)).reshape(-1),2)  #NumPy中的round函数将结果四舍五入保留两位小数
real_tem = data.Tem1.iloc[:2].values
print(f"第9~10时刻的温度预测:",  pred_)
print("第9~10时刻的真实温度:",  real_tem)

代码输出

第9~10时刻的温度预测: [31.4  29.51]
第9~10时刻的真实温度: [25. 25.]

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 20240812软考架构-------软考36-40答案解析
  • Haproxy知识点
  • sp eric靶机渗透测试
  • 【学习笔记】Day 13
  • RuoYi-Vue新建模块
  • 复杂SQL查询案例分析:计算每个月的累积唯一用户数
  • LVS详解
  • 【已解决】AttributeError: ‘diet’ object has no attribute ‘has_key’
  • 前端性能优化方法
  • 快速拷贝复制工具软件@拷贝工具@多线程拷贝@robocopy
  • 视频汇聚平台智能边缘分析一体机分析平台摄像头异常位移算法识别检测
  • 串行通信协议--CAN(Controller Area Network Bus,控制器局域网总线)
  • Python 异步编程:Sqlalchemy 异步实现方式
  • HarmonyOS ArkTS 构建布局
  • Highcharts 条形图:数据可视化的利器
  • 《Java8实战》-第四章读书笔记(引入流Stream)
  • 【mysql】环境安装、服务启动、密码设置
  • CentOS 7 修改主机名
  • egg(89)--egg之redis的发布和订阅
  • Git初体验
  • Java,console输出实时的转向GUI textbox
  • Java教程_软件开发基础
  • Leetcode 27 Remove Element
  • nodejs调试方法
  • passportjs 源码分析
  • React-生命周期杂记
  • SAP云平台运行环境Cloud Foundry和Neo的区别
  • Stream流与Lambda表达式(三) 静态工厂类Collectors
  • 巧用 TypeScript (一)
  • 使用SAX解析XML
  • 手写双向链表LinkedList的几个常用功能
  • 腾讯大梁:DevOps最后一棒,有效构建海量运营的持续反馈能力
  • 智能网联汽车信息安全
  • [地铁译]使用SSD缓存应用数据——Moneta项目: 低成本优化的下一代EVCache ...
  • 国内唯一,阿里云入选全球区块链云服务报告,领先AWS、Google ...
  • #systemverilog# 之 event region 和 timeslot 仿真调度(十)高层次视角看仿真调度事件的发生
  • (02)Hive SQL编译成MapReduce任务的过程
  • (145)光线追踪距离场柔和阴影
  • (html转换)StringEscapeUtils类的转义与反转义方法
  • (初研) Sentence-embedding fine-tune notebook
  • (附源码)spring boot校园拼车微信小程序 毕业设计 091617
  • (四)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划MATLAB
  • (一)SvelteKit教程:hello world
  • **CI中自动类加载的用法总结
  • *Django中的Ajax 纯js的书写样式1
  • *p=a是把a的值赋给p,p=a是把a的地址赋给p。
  • .apk 成为历史!
  • .bat批处理(九):替换带有等号=的字符串的子串
  • .chm格式文件如何阅读
  • .NET C# 操作Neo4j图数据库
  • .NET Core WebAPI中封装Swagger配置
  • .NET Framework与.NET Framework SDK有什么不同?
  • .vue文件怎么使用_vue调试工具vue-devtools的安装
  • @Not - Empty-Null-Blank
  • []C/C++读取串口接收到的数据程序