当前位置: 首页 > news >正文

深入浅出:你需要了解的用户数据报协议(UDP)

文章目录

      • **UDP概述**
        • **1. 无连接性**
        • **2. 尽最大努力交付**
        • **3. 面向报文**
        • **4. 多种交互通信支持**
        • **5. 较少的首部开销**
      • **UDP报文的首部格式**
        • **详细解释每个字段**
      • **UDP的多路分用模型**
        • **多路分用的实际应用**
      • **检验和的计算方法**
        • **伪首部的详细内容**
        • **检验和计算步骤**
      • **实际应用中的UDP**
        • **1. 实时视频流**
        • **2. 在线游戏**
        • **3. 物联网(IoT)**
      • **UDP的局限性**
      • **如何提高UDP的可靠性**
      • **总结**

用户数据报协议(UDP)是互联网协议套件中的一种协议,它在IP层之上增加了一些有限的功能,如端口功能和差错检测功能。虽然UDP用户数据报只能提供不可靠的交付,但它在某些方面有其特殊的优点。本文将带你深入了解UDP的基本概念、优点、报文结构以及多路分用模型。无论你是网络新手还是想要巩固基础知识,这篇文章都能让你对UDP有一个清晰的认识。

UDP概述

1. 无连接性

UDP是无连接的,即发送数据之前不需要建立连接,这样可以减少开销和发送数据之前的时延。这一特性使得UDP相比于其他协议(如TCP)更加轻量级和高效。举个例子,当你在进行视频通话时,你不希望每次发送数据都需要先建立一个连接,这样会增加延迟,影响通话质量。

2. 尽最大努力交付

UDP使用尽最大努力交付,即不保证可靠交付,同时也不使用流量控制和拥塞控制。因此,主机不需要维持复杂的连接状态表。这对于某些应用来说非常重要,例如实时应用(如IP电话、实时视频会议等) ,这些应用要求以恒定速率发送数据,并且允许在网络发生拥塞时丢失一些数据。比如在IP电话中,一些数据包的丢失并不会显著影响通话质量,但延迟的增加却会。

3. 面向报文

UDP是面向报文的,也就是说,应用程序交给UDP一个报文,UDP就发送这个报文;而UDP收到一个报文,就把它交付应用程序。应用程序需要选择合适大小的报文,以避免在IP层传输时效率降低。举个例子,如果你发送的报文太长,IP层在传送时可能要进行分片,这会降低效率;如果报文太短,IP数据报的首部相对太大,也会降低效率。

4. 多种交互通信支持

UDP支持多种交互通信模式,包括一对一、一对多、多对一和多对多的交互通信,使其在多种场景下都能灵活应用。例如,在多人视频会议中,UDP可以支持多个用户同时发送和接收数据,从而实现高效的多方通信。

5. 较少的首部开销

UDP首部只有8字节的开销,相比于TCP的20字节首部,这大大减少了数据传输的负担。对于需要频繁发送小数据包的应用,如在线游戏,这种减少开销的特性尤其重要。

UDP报文的首部格式

UDP用户数据报由两个部分组成:数据部分和首部。首部非常简单,只有8字节,由四个字段组成,每个字段都是2字节。这些字段包括源端口、目的端口、长度和检验和。

  • 源端口:标识发送方的端口号。
  • 目的端口:标识接收方的端口号。
  • 长度:UDP用户数据报的总长度。
  • 检验和:用于差错检测,防止数据报在传输中出错。
详细解释每个字段
  1. 源端口:这是发送方的端口号,用于标识数据报的发送来源。例如,在一场在线游戏中,游戏服务器的端口号就是源端口。
  2. 目的端口:这是接收方的端口号,用于标识数据报的接收目的地。例如,在同一场在线游戏中,玩家的端口号就是目的端口。
  3. 长度:这是UDP用户数据报的总长度,包括首部和数据部分。这个字段确保接收方知道接收到的数据报的确切大小。
  4. 检验和:这是一个差错检测码,用于验证数据报在传输过程中是否出错。如果检验和验证失败,数据报将被丢弃。

UDP的多路分用模型

UDP的多路分用模型如图所示。一个UDP端口与一个报文队列(缓存)关联,UDP根据目的端口号将到达的报文加到对应的队列中。应用进程根据需要从端口对应的队列中读取整个报文。需要注意的是,端口队列中的所有报文的目的IP地址和目的端口号相同,但源IP地址和源端口号可能不同。

多路分用的实际应用

在一个视频流应用中,不同的视频源(比如多个摄像头)可能发送数据到同一个服务器端口。服务器通过端口号将数据分配到不同的队列,然后应用程序从这些队列中读取数据进行处理。这样可以确保数据的有序和准确交付。

检验和的计算方法

UDP报文首部中的检验和计算方法有些特殊。在计算检验和时,要在UDP用户数据报之前增加12字节的伪首部。伪首部并不是UDP用户数据报真正的首部,仅在计算检验和时临时使用。通过这种方法,可以防止报文被意外地交付到错误的目的地。

伪首部的详细内容

伪首部包括以下字段:

  1. 源IP地址:发送方的IP地址。
  2. 目的IP地址:接收方的IP地址。
  3. 全零字段:用于填充。
  4. 协议字段:表示使用的协议类型,对于UDP,该值为17。
  5. UDP长度:UDP用户数据报的总长度。
检验和计算步骤
  1. 发送方先将检验和字段置为全零。
  2. 将伪首部及UDP用户数据报看作由多个16位的字串组成。
  3. 如果UDP用户数据报的数据部分不是偶数个字节,则填入一个全零字节(但此字节不发送)。
  4. 按二进制反码计算这些16位字串的和。
  5. 将此和的二进制反码写入检验和字段。
  6. 发送这样的UDP用户数据报。

接收方会将收到的UDP用户数据报和伪首部(以及可能的填充全零字节)放在一起,再按二进制反码求这些16位字的和。当无差错时其结果应为全1,否则表明有差错出现,接收方就应丢弃该数据报(也可以上交应用层,附上出现差错的警告)。

实际应用中的UDP

1. 实时视频流

在实时视频流应用中,如YouTube直播或Twitch,UDP的低延迟特性尤为重要。实时视频流要求数据快速传输,即使丢失少量数据也不会显著影响用户体验。UDP可以在网络拥塞时迅速恢复,而无需等待重传确认。

2. 在线游戏

在线游戏同样依赖UDP的快速传输和低延迟特性。在多人在线游戏中,玩家的动作需要实时同步,即使丢失少量数据包,也不应影响游戏的流畅性。UDP能确保游戏中的数据传输迅速而无阻碍。

3. 物联网(IoT)

在物联网设备之间的通信中,UDP也被广泛使用。许多物联网设备需要定期发送状态更新或数据,这些数据通常很小且对延迟敏感。UDP的低开销和快速传输特性使其成为物联网通信的理想选择。

UDP的局限性

虽然UDP在许多应用中表现出色,但它也有一些局限性。由于缺乏流量控制和拥塞控制,网络拥塞时可能会导致数据丢失。此外,UDP不保证数据包的顺序和完整性,因此在需要高度可靠的应用中,TCP可能是更好的选择。

如何提高UDP的可靠性

尽管UDP本身不提供可靠性保证,但应用层可以通过一些手段来提高其可靠性。例如,前向纠错(FEC)和重传机制可以在不影响实时性的情况下减少数据丢失。应用进程可以在发送数据时加入冗余信息,接收方可以利用这些冗余信息来纠正错误或重建丢失的数据。

总结

UDP作为一种无连接的传输层协议,虽然不保证可靠交付,但在实时应用和要求低延迟的场景中具有明显优势。理解UDP的工作原理和优点有助于在实际应用中更好地选择合适的传输协议。希望通过本文,你对UDP有了更深入的了解,并能在未来的网络应用中灵活运用UDP。


以上就是对UDP的全面解析,希望这篇文章能够帮助你更好地理解和掌握用户数据报协议。无论是理论学习还是实际应用,掌握这些基础知识都是非常重要的。如果你有任何疑问或需要进一步了解的内容,欢迎在评论区留言,我们一起讨论交流!

图文来源:《计算机网络教程》第六版微课版

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • java设计模式--结构型模式
  • STM32——PWM波形输出
  • C#实现数据采集系统-数据反写(1)MQTT订阅接收消息
  • 【回文数判断】输入一个5位数,判断它是不是回文数
  • springboot后端开发-自定义参数校验器
  • Win 10高效录屏指南:四大神器助力屏幕录制!
  • python学习之redis
  • openpyxl库详细介绍十分全面
  • QT-五子棋游戏
  • JavaScript 中的深拷贝新宠:structuredClone() 函数详解
  • 网络安全之xss靶场练习
  • 用py获取显卡的占用率
  • 【解压即玩】PC电脑版【漫威蜘蛛侠2】豪华中文版+通关存档+画质超棒,神作
  • MySQL——单表查询(二)按条件查询(11)OR 和 AND 关键字一起使用的情况
  • Springcloud从零开始--Eureka(一)
  • ES6指北【2】—— 箭头函数
  • [ 一起学React系列 -- 8 ] React中的文件上传
  • 【前端学习】-粗谈选择器
  • dva中组件的懒加载
  • gops —— Go 程序诊断分析工具
  • java第三方包学习之lombok
  • Java多态
  • Kibana配置logstash,报表一体化
  • Linux gpio口使用方法
  • Linux中的硬链接与软链接
  • React+TypeScript入门
  • REST架构的思考
  • Ruby 2.x 源代码分析:扩展 概述
  • TypeScript实现数据结构(一)栈,队列,链表
  • 构建工具 - 收藏集 - 掘金
  • 检测对象或数组
  • 解析带emoji和链接的聊天系统消息
  • 走向全栈之MongoDB的使用
  • raise 与 raise ... from 的区别
  • 浅谈sql中的in与not in,exists与not exists的区别
  • 完善智慧办公建设,小熊U租获京东数千万元A+轮融资 ...
  • # 消息中间件 RocketMQ 高级功能和源码分析(七)
  • (1)虚拟机的安装与使用,linux系统安装
  • (html5)在移动端input输入搜索项后 输入法下面为什么不想百度那样出现前往? 而我的出现的是换行...
  • (Java入门)学生管理系统
  • (LeetCode) T14. Longest Common Prefix
  • (pojstep1.1.1)poj 1298(直叙式模拟)
  • (编译到47%失败)to be deleted
  • (附源码)springboot电竞专题网站 毕业设计 641314
  • (附源码)SSM环卫人员管理平台 计算机毕设36412
  • (规划)24届春招和25届暑假实习路线准备规划
  • (四)事件系统
  • (微服务实战)预付卡平台支付交易系统卡充值业务流程设计
  • (未解决)macOS matplotlib 中文是方框
  • (转)四层和七层负载均衡的区别
  • ***利用Ms05002溢出找“肉鸡
  • **python多态
  • .L0CK3D来袭:如何保护您的数据免受致命攻击
  • .NET 3.0 Framework已经被添加到WindowUpdate
  • .NET MVC第三章、三种传值方式