当前位置: 首页 > news >正文

手算神经网络MAC和FLOP

在本文中,我们将深入探讨神经网络背景下的 MAC(乘法累加运算)和 FLOP(浮点运算)概念。通过学习如何使用笔和纸手动计算这些内容,你将对各种网络结构的计算复杂性和效率有基本的了解。

这是 colab 笔记本中一个功能齐全的示例。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、为什么要计算MAC和FLOP

首先让我们看下MAC和FLOP的定义。

  • FLOP:FLOP(浮点运算)可视为加法、减法、乘法或除法运算。
  • MAC:MAC(乘法累加)运算本质上是乘法后跟加法,即 MAC = a * b + c。它算作两个 FLOP(一个用于乘法,一个用于加法)。

解 MAC 和 FLOP 不仅仅是一项学术活动;它是优化神经网络性能和效率的关键组成部分。它有助于设计计算效率高且有效的模型,最终在训练和推理阶段节省时间和资源。

  • 资源效率。了解 FLOP 有助于估计神经网络的计算成本。通过优化 FLOP 的数量,可以减少训练或运行神经网络所需的时间。
  • 内存效率。MAC 操作通常决定网络的内存使用量,因为它们与网络中的参数和激活数量直接相关。减少 MAC 有助于提高网络内存效率。
  • 功率效率。FLOP 和 MAC 操作都会影响运行神经网络的硬件的功耗。通过优化这些指标,可以潜在地降低运行网络的能耗,这在移动和嵌入式设备中尤为重要。
  • 修剪和量化。了解 FLOP 和 MAC 有助于通过修剪(删除不必要的连接)和量化(降低权重和激活的精度)等技术优化神经网络,旨在降低计算和内存成本。
  • 模型之间的比较。FLOP 和 MAC 提供了一种比较不同模型的计算复杂度的方法,这可以作为选择特定应用模型的标准。
  • 硬件基准测试。这些指标还可用于对不同硬件平台在运行神经网络时的性能进行基准测试。
  • 实时应用。对于实时应用,尤其是在计算资源有限的边缘设备上,理解和优化这些指标对于确保网络能够在应用的时间限制内运行至关重要。
  • 电池寿命。在电池供电的设备中,降低神经网络的计算成本(从而降低能耗)有助于延长电池寿命。
  • 设计新算法。研究人员可以在开发新算法或神经网络架构时使用这些指标作为指导方针,旨在提高计算效率而不牺牲准确性。

2、神经网络层的MAC和FLOP计算

接下来让我们计算浮点运算或乘法累加运算的数量,以了解每层的计算复杂度。

2.1 全连接层(密集层)

现在,我们将创建一个具有 3 层的简单神经网络,并开始计算所涉及的运算。以下是计算第一线性层(即全连接(或密集)层)中的运算的公式:

对于具有 I 个输入和 O 个输出的全连接层,运算数量如下:

  • MAC:I × O
  • FLOP:2 × (I × O)(因为每个 MAC 算作两个 FLOP)
class SimpleLinearModel(nn.Module):def __init__(self):super(SimpleLinearModel,self).__init__()self.fc1 = nn.Linear(in_features=10, out_features=20, bias=False)self.fc2 = nn.Linear(in_features=20, out_features=15, bias=False)self.fc3 = nn.Linear(in_features=15, out_features=1, bias=False)def forward(self, x):x = self.fc1(x)x = F.relu(x)x = self.fc2(x)F.relu(x)x = self.fc3(x)return xlinear_model = SimpleLinearModel().cuda()
sample_data = torch.randn(1, 10).cuda()
步骤 1:确定层参数对于给定的模型,我们有三个线性层,定义为:
  • fc1:10 个输入特征,20 个输出特征
  • fc2:20 个输入特征,15 个输出特征
  • fc3:15 个输入特征,1 个输出特征
步骤 2:计算 FLOP 和 MAC 现在,计算每个层的 MAC 和 FLOP:

层 fc1:

  • MACs = 10 × 20 = 200
  • FLOPs = 2 × MACs = 2 × 200 = 400

层 fc2:

  • MACs = 20 × 15 = 300
  • FLOPs = 2 × MACs = 2 × 300 = 600

层 fc3:

  • MACs = 15 × 1 = 15
  • FLOPs = 2 × MACs = 2 × 15 = 30
步骤 3:总结结果最后,为了找到单个输入通过整个网络的 MAC 和 FLOP 总数,我们将所有层的结果相加:
  • 总 MAC = MACs(fc1) + MACs(fc2) + MACs(fc3) = 200 + 300 + 15 = 515
  • 总 FLOP = FLOPs(fc1) + FLOPs(fc2) + FLOPs(fc3) = 400 + 600 + 30 = 1030

我们可以使用 torchprofile 库来验证给定神经网络模型的 FLOP 和 MAC 计算。操作方法如下:

macs = profile_macs(linear_model, sample_data)
print(macs)#515

2.2 卷积神经网络 (CNN)

现在,让我们确定一个简单的卷积模型的 MAC(乘法累加)和 FLOP(浮点运算)。这个计算可能比我们之前使用密集层的示例更复杂一些,主要是由于步幅、填充和内核大小等因素。不过,我会将其分解,以便于我们学习。

class SimpleConv(nn.Module):def __init__(self):super(SimpleConv, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)self.fc =  nn.Linear(in_features=32*28*28, out_features=10)def forward(self, x):x = self.conv1(x)x = F.relu(x)x = self.conv2(x)x = F.relu(x)x = x.view(x.shape[0], -1)x = self.fc(x)return xx = torch.rand(1, 1, 28, 28).cuda()
conv_model = SimpleConv().cuda()

计算卷积运算的重要注意事项:

  • 计算卷积核的运算时,务必记住核中的通道数应与输入中的通道数相匹配。例如,如果我们的输入是具有三个颜色通道的 RGB 图像,则核的尺寸将为 3x3x3,以说明输入的三个通道。
  • 为了演示的目的,我们将在整个卷积层中保持一致的图像大小。为此,我们将填充值和步幅值都设置为 1。
步骤 1:识别层参数

对于给定的模型,我们有两个卷积层和一个线性层,定义为:

  • conv1:1 个输入通道,16 个输出通道,核大小为 3
  • conv2:16 个输入通道,32 个输出通道
  • fc:322828 个输入特征,1 个输出特征。因为我们的图像在卷积层中没有改变
步骤 2:计算 FLOP 和 MAC 现在,计算每个层的 MAC 和 FLOP:

公式为 output_image_size * kernel shape * output_channels

Layer conv1:

  • MACs = 28 * 28 * 3 * 3 * 1 * 16 = 1,12,896
  • FLOPs = 2 × MACs = 2 × 200 = 2,25,792

Layer conv2:

  • MACs = 28 × 28 * 3 * 3 * 16 * 32 = 3,612,672
  • FLOPs = 2 × MACs = 2 × 300 = 600 = 7,225,344

Layer fc:

  • MACs = 32 * 28 * 28 * 10 = 250,880
  • FLOPs = 2 × MACs = 2 × 15 = 501,760
步骤 3:总结结果最后,为了找到单个输入通过整个网络的 MAC 和 FLOP 总数,我们将所有层的结果相加:
  • 总 MAC = MACs(conv1) + MACs(conv2) + MACs(fc) = 1,12,896 + 3,612,672 + 250,880 = 39,76,448
  • 总 FLOPs = FLOPs(fc1) + FLOPs(fc2) + FLOPs(fc3) = 2,25,792 + 7,225,344 + 501,760 = 7,952,896

使用 torchprofile 库验证操作:

macs = profile_macs(conv_model,(x,))
print(macs)#3976448

2.3 自注意力模块

在介绍了线性层和卷积层的 MAC 之后,我们的下一步是确定自注意力模块的 FLOP(浮点运算),这是大型语言模型中的关键组件。此计算对于理解此类模型的计算复杂性至关重要。让我们深入研究一下。

class SimpleAttentionBlock(nn.Module):def __init__(self, embed_size, heads):super(SimpleAttentionBlock, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert (self.head_dim * heads == embed_size), "Embedding size needs to be divisible by heads"self.values = nn.Linear(self.embed_size, self.embed_size, bias=False)self.keys = nn.Linear(self.embed_size, self.embed_size, bias=False)self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)self.fc_out = nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, queries, mask):N = queries.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]print(values.shape)values = self.values(values).reshape(N,  self.heads, value_len, self.head_dim)keys = self.keys(keys).reshape(N, self.heads, key_len, self.head_dim)queries = self.queries(queries).reshape(N,  self.heads, query_len, self.head_dim)energy = torch.matmul(queries, keys.transpose(-2, -1))        if mask is not None:energy = energy.masked_fill(mask == 0, float("-1e20"))attention = torch.nn.functional.softmax(energy, dim=3)out = torch.matmul(attention, values).reshape(N, query_len, self.heads * self.head_dim)return self.fc_out(out)
步骤 1:识别层参数

线性变换

让我们定义 hyper_params

  • batch_size = 1
  • seq_len = 10
  • embed_size = 256

在注意力块中,我们有三个线性变换(用于查询、键和值),最后一个(fc_out)。

  • 输入大小:[batch_size, seq_len, embed_size]
  • 线性变换矩阵:[embed_size, embed_size]
  • MAC:batch_size×seq_len×embed_size×embed_size

查询、键、值线性变换:

  • 查询变换的MAC = 1 * 10 * 256 * 256 = 6,55,360
  • 键变换的MAC = 1 * 10 * 256 * 256 = 6,55,360
  • 值变换的MAC = 1 * 10 * 256 * 256 = 6,55,360

能量计算:查询(重塑)点键(重塑)——点积运算。

  • Macs:batch_size×seq_len×seq_len×heads×head_dim

查询和键点积

  • MACS = 1 * 10 * 10 * 32 [32 因为 256/8 除以 heads] = 25,600

注意权重和值计算的输出:注意权重点值(重塑)——另一个点积运算。

  • Macs:batch_size×seq_len×seq_len×heads×head_dim

注意力和价值点积

  • Macs = 1 * 10 * 10 * 32 = 25,600

全连接输出 (fc_out)

  • Macs:batch_size×seq_len×heads×head_dim×embed_size
  • Macs = 1 * 10 * 8 * 32 * 256 = 6,55,360
步骤 2:总结结果
  • 总 MACs = MACs(conv1) + MACs(conv2) + MACs(fc) = 6,55,360 + 6,55,360 + 6,55,360 + 25,600 + 25,600 + 6,55,360 = 26,72,640
  • 总计FLOPs = 2 * 总 MAC = 53,45,280

使用 torchprofile 库验证操作:

# Create an instance of the model
model = SimpleAttentionBlock(embed_size=256, heads=8).cuda()# Generate some sample data (batch of 5 sequences, each of length 10, embedding size 256)
values = torch.randn(1, 10, 256).cuda()
keys = torch.randn(1, 10, 256).cuda()
queries = torch.randn(1, 10, 256).cuda()# No mask for simplicity
mask = None
# Forward pass with the sample data
macs = profile_macs(model, (values, keys, queries, mask))
print(macs)#2672640

3、结束语

在整个计算过程中,我们主要考虑批次大小为 1。但是,需要注意的是,针对较大批次大小缩放 MAC 和 FLOP 非常简单。

要计算批次大小大于 1 的 MAC 或 FLOP,只需将批次大小为 1 时获得的总 MAC 或 FLOP 乘以所需的批次大小值即可。这种缩放允许你估算神经网络模型中各种批次大小的计算要求。

请记住,结果将直接随批次大小线性缩放。例如,如果批次大小为 32,则可以通过将批次大小为 1 的值乘以 32 来获得 MAC 或 FLOP。


原文链接:手算神经网络MAC和FLOP - BimAnt

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • pve(‌Proxmox Virtual Environment)-修改时区
  • 模型 7S分析法(麦肯锡)
  • 线程同步方式
  • Pytorch封装简单RNN模型,进行中文训练及文本预测
  • Python 爬虫爬取豆瓣电影列表信息,爬虫的原理,应用领域介绍学习
  • 回归预测|基于北方苍鹰优化核极限学习机的数据预测Matlab程序NGO-KELM 多特征输入单输出
  • 强大的 solidity 框架:Foundry 之命令行工具 — Cast
  • php-fpm 如何查看哪个正在执行死循环 并终止
  • Redis 的 主从复制
  • 软件中的重构
  • Linux CentOS 添加路由
  • 如何下载jmeter旧版本
  • 如何使用 AWS CLI 为私有 AWS S3 存储桶中的对象创建预签名 URL
  • 软件架构设计——能力供应商模式
  • Base CTF [第2周]UPX的
  • 9月CHINA-PUB-OPENDAY技术沙龙——IPHONE
  • JS基础篇--通过JS生成由字母与数字组合的随机字符串
  • Linux快速复制或删除大量小文件
  • Lucene解析 - 基本概念
  • nodejs调试方法
  • PAT A1120
  • SQL 难点解决:记录的引用
  • 初探 Vue 生命周期和钩子函数
  • 翻译--Thinking in React
  • 简单基于spring的redis配置(单机和集群模式)
  • 可能是历史上最全的CC0版权可以免费商用的图片网站
  • 盘点那些不知名却常用的 Git 操作
  • 深度学习入门:10门免费线上课程推荐
  • 一份游戏开发学习路线
  • 关于Android全面屏虚拟导航栏的适配总结
  • ​iOS安全加固方法及实现
  • ​卜东波研究员:高观点下的少儿计算思维
  • ​创新驱动,边缘计算领袖:亚马逊云科技海外服务器服务再进化
  • !!java web学习笔记(一到五)
  • # linux 中使用 visudo 命令,怎么保存退出?
  • #define
  • #LLM入门|Prompt#3.3_存储_Memory
  • #pragma pack(1)
  • %3cli%3e连接html页面,html+canvas实现屏幕截取
  • (2)STL算法之元素计数
  • (Windows环境)FFMPEG编译,包含编译x264以及x265
  • (笔试题)合法字符串
  • (十二)python网络爬虫(理论+实战)——实战:使用BeautfulSoup解析baidu热搜新闻数据
  • (一)appium-desktop定位元素原理
  • (原創) 如何刪除Windows Live Writer留在本機的文章? (Web) (Windows Live Writer)
  • (转)nsfocus-绿盟科技笔试题目
  • (转)详解PHP处理密码的几种方式
  • (转载)VS2010/MFC编程入门之三十四(菜单:VS2010菜单资源详解)
  • ***测试-HTTP方法
  • .net core 源码_ASP.NET Core之Identity源码学习
  • .net 程序 换成 java,NET程序员如何转行为J2EE之java基础上(9)
  • .NET 分布式技术比较
  • .Net(C#)自定义WinForm控件之小结篇
  • .NET/C# 检测电脑上安装的 .NET Framework 的版本
  • .Net插件开发开源框架