当前位置: 首页 > news >正文

OpenCV_距离变换的图像分割和Watershed算法详解

在学习watershed算法的时候,书写代码总会出现一些错误:

上述代码运行报错,显示OpenCV(4.10.0) Error: Assertion failed (src.type() == CV_8UC3 && dst.type() == CV_32SC1) in cv::watershed

查找资料:目前已解决

这个错误明确指出是在  watershed  函数中输入的参数类型不匹配。根据错误信息,要求  src (即  image  )的类型是  CV_8UC3  , dst (即  markers  )的类型是  CV_32SC1  。
 
您需要确保  image  是 8 位无符号的 3 通道彩色图像,并且  markers  是 32 位有符号的单通道矩阵。
 
请检查以下几点:
 
1.  image  的初始化和类型是否正确。
2.  markers  的创建和后续操作是否保持了  CV_32SC1  类型。
 
如果问题仍然存在,请提供更多关于  image  的初始化和加载的代码部分,以便更准确地帮助您找到问题所在。

分水岭算法

分水岭算法的基本原理为:将任意的灰度图像视为地形图表面,其中灰度值高的部分表示山峰和丘陵,而灰度值低的地方表示山谷。用不同颜色的水(标签)填充每个独立的山谷(局部最小值);随着水平面的上升,来自不同山谷(具有不同颜色)的水将开始合并。为了避免出现这种情况,需要在水汇合的位置建造水坝;持续填充水和建造水坝,直到所有的山峰和丘陵都在水下。整个过程中建造的水坝将作为图像分割的依据。

使用分水岭算法执行图像分割操作时通常包含下列步骤:
(1) 加载源图像并检查是否加载没有任何问题,然后显示
(2) 将原图转换为灰度图像,然后显示
(3) 应用形态学变换中的开运算和膨胀操作,去除图像噪声,获取图像边缘信息,确定图像背景
(4) 显示矩阵marks(只为显示,可省略)
(5) 执行分水岭算法分割图像
(6) 对每一个区域进行颜色填充
(7) 跟原始图像融合
//生成随机颜色函数
Vec3b randomColor(int value);
Vec3b randomColor(int value) {value = value % 255;RNG rng;int aa = rng.uniform(0, value);int bb = rng.uniform(0, value);int cc = rng.uniform(0, value);return Vec3b(aa, bb, cc);
}
void QuickDemo::thirtyFive(Mat& image) {//灰度化,滤波,Canny边缘检测Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);GaussianBlur(gray, gray, Size(5, 5), 2);Canny(gray, gray, 80, 150);//imshow("gray", gray);//查找轮廓vector<vector<Point>>contours;vector<Vec4i>hierarchy;findContours(gray, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point());Mat contoursImage = Mat::zeros(image.size(), CV_8UC1);//轮廓	Mat marks(image.size(), CV_32S); //Opencv分水岭第二个矩阵参数marks = Scalar::all(0);//int index = 0;//int compCount = 0;for (size_t i = 0; i < contours.size(); i++){//对marks进行标记,对不同区域的轮廓进行编号,相当于设置注水点,有多少轮廓,就有多少注水点drawContours(marks, contours, i, Scalar::all(i + 1), 1, 8, hierarchy);drawContours(contoursImage, contours, i, Scalar(255), 1, 8, hierarchy);}//我们来看一下传入的矩阵marks里是什么东西//Mat marksShows;//convertScaleAbs(marks,marksShows);//imshow("marksShows", marksShows);//imshow("contoursImage", contoursImage);watershed(image, marks);//我们再来看一下分水岭算法之后的矩阵marks里是什么东西Mat afterwatershed;convertScaleAbs(marks, afterwatershed);//imshow("afterwatershed", afterwatershed);//对每一个区域进行颜色填充Mat perspectiveImage = Mat::zeros(image.size(), CV_8UC3);for (size_t i = 0; i < marks.rows; i++){for (size_t j = 0; j < marks.cols; j++){int index = marks.at<int>(i, j);if (index == -1) {perspectiveImage.at<Vec3b>(i, j) = Vec3b(255, 255, 255);}else {perspectiveImage.at<Vec3b>(i, j) = randomColor(index);}}}imshow("perspectiveImage", perspectiveImage);//分割并填充颜色的结果跟原始图像融合Mat wshed;addWeighted(image, 0.4, perspectiveImage, 0.6, 0, wshed);imshow("wshed", wshed);}

说明/结果

1.加载源图像并检查是否加载没有任何问题,然后显示:

2.将原图转换为灰度图像,然后显示:

Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
imshow("gray", gray);

3.应用形态学变换中的开运算和膨胀操作,去除图像噪声,获取图像边缘信息,确定图像背景

GaussianBlur(gray, gray, Size(5, 5), 2);
Canny(gray, gray, 80, 150);
imshow("gray", gray);//查找轮廓
vector<vector<Point>>contours;
vector<Vec4i>hierarchy;
findContours(gray, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point());Mat contoursImage = Mat::zeros(image.size(), CV_8UC1);//轮廓	
Mat marks(image.size(), CV_32S); //Opencv分水岭第二个矩阵参数
marks = Scalar::all(0);
//int index = 0;
//int compCount = 0;
for (size_t i = 0; i < contours.size(); i++)
{//对marks进行标记,对不同区域的轮廓进行编号,相当于设置注水点,有多少轮廓,就有多少注水点drawContours(marks, contours, i, Scalar::all(i + 1), 1, 8, hierarchy);drawContours(contoursImage, contours, i, Scalar(255), 1, 8, hierarchy);
}
imshow("contoursImage", contoursImage);

4.显示矩阵marks(只为显示,可省略)

//我们来看一下传入的矩阵marks里是什么东西
Mat marksShows;
convertScaleAbs(marks,marksShows);
imshow("marksShows", marksShows);

5.执行分水岭算法分割图像

watershed(image, marks);
//我们再来看一下分水岭算法之后的矩阵marks里是什么东西
Mat afterwatershed;
convertScaleAbs(marks, afterwatershed);
imshow("afterwatershed", afterwatershed);

6.对每一个区域进行颜色填充

//生成随机颜色函数
Vec3b randomColor(int value);
Vec3b randomColor(int value) {value = value % 255;RNG rng;int aa = rng.uniform(0, value);int bb = rng.uniform(0, value);int cc = rng.uniform(0, value);return Vec3b(aa, bb, cc);
}
//对每一个区域进行颜色填充
Mat perspectiveImage = Mat::zeros(image.size(), CV_8UC3);
for (size_t i = 0; i < marks.rows; i++)
{for (size_t j = 0; j < marks.cols; j++){int index = marks.at<int>(i, j);if (index == -1) {perspectiveImage.at<Vec3b>(i, j) = Vec3b(255, 255, 255);}else {perspectiveImage.at<Vec3b>(i, j) = randomColor(index);}}
}
imshow("perspectiveImage", perspectiveImage);

7.跟原始图像融合

Mat wshed;
addWeighted(image, 0.4, perspectiveImage, 0.6, 0, wshed);
imshow("wshed", wshed);

距离变换实现分水岭算法

实现步骤:
1.输入图像
2.灰度化
3.二值化
4.执行距离变换
5.归一化
6.二值化
7.生成marker:通过findContours+drawContours来创建一个marker
8.将7生成的marker放入分水岭函数:watershed
9.给marker着色
10.输出着色后的图像
此算法关键点在于生成marker。生成marker之后其实已经完成了算法,后面的着色只是为了让输出更加好看。
void QuickDemo::thirtyFour(Mat& image) {Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);Mat binary;threshold(gray, binary, 175, 255, THRESH_BINARY);//imshow("binary image ",bw);Mat dist;distanceTransform(binary, dist, DIST_L2, 3);normalize(dist, dist, 0, 1, NORM_MINMAX);threshold(dist, dist, 0.1, 1, THRESH_BINARY);normalize(dist, dist, 0, 255, NORM_MINMAX);dist.convertTo(dist, CV_8UC1);imshow("distanceTransform", dist);vector<vector<Point>>contours;findContours(dist, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE, Point());vector<Vec4i>hierarchy;Mat markers(dist.size(), CV_8U); //Opencv分水岭第二个矩阵参数markers = Scalar::all(0);for (size_t i = 0; i < contours.size(); i++){drawContours(markers, contours, i, Scalar::all(i + 1), -1, 8, hierarchy, INT_MAX);}circle(markers, Point(3, 3), 3, Scalar(255), -1);//imshow("markers", markers*20);image.convertTo(image, CV_8UC3);markers.convertTo(markers, CV_32SC1);watershed(image, markers);markers.convertTo(markers, CV_8UC1);imshow("markers", markers*50);RNG rng(12345);vector<Vec3b>colors;for (size_t i = 0; i < contours.size(); i++){int r = rng.uniform(0, 255);int g = rng.uniform(0, 255);int b = rng.uniform(0, 255);colors.push_back(Vec3b(r, g, b));}//给marker着色Mat finalResult = Mat::zeros(dist.size(), CV_8UC3);//三通道彩色图像int index = 0;for (int row = 0; row < markers.rows; row++) {for (int col = 0; col < markers.cols; col++) {index = markers.at<uchar>(row, col);if (index > 0 && index <= contours.size()) {finalResult.at<Vec3b>(row, col) = colors[index - 1];}else {finalResult.at<Vec3b>(row, col) = Vec3b(255, 255, 255);}}}imshow("finalResult", finalResult);}

说明/结果

1. 输入图像并显示

2.获取灰度图像并显示

Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
imshow("gray image ", gray);

3.获取二值图像并显示

Mat binary;
threshold(gray, binary, 175, 255, THRESH_BINARY);
imshow("binary image ", binary);

4.执行距离变换归一化,并显示

Mat dist;
distanceTransform(binary, dist, DIST_L2, 3);
normalize(dist, dist, 0, 1, NORM_MINMAX);
imshow("dist image ", dist);

5.进行二值变换归一化,并显示

threshold(dist, dist, 0.1, 1, THRESH_BINARY);
normalize(dist, dist, 0, 255, NORM_MINMAX);
dist.convertTo(dist, CV_8UC1);
imshow("distanceTransform", dist);

6.生成marker:通过findContours+drawContours来创建一个marker

vector<vector<Point>>contours;
findContours(dist, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE, Point());
vector<Vec4i>hierarchy;
Mat markers(dist.size(), CV_8U); //Opencv分水岭第二个矩阵参数
markers = Scalar::all(0);
for (size_t i = 0; i < contours.size(); i++)
{drawContours(markers, contours, i, Scalar::all(i + 1), -1, 8, hierarchy, INT_MAX);
}
circle(markers, Point(3, 3), 3, Scalar(255), -1);
imshow("markers", markers*20);

7.将7生成的marker放入分水岭函数:watershed

image.convertTo(image, CV_8UC3);
markers.convertTo(markers, CV_32SC1);
watershed(image, markers);
markers.convertTo(markers, CV_8UC1);
imshow("markers", markers*50);

8.给marker着色,并输出着色后的图像

RNG rng(12345);
vector<Vec3b>colors;
for (size_t i = 0; i < contours.size(); i++)
{int r = rng.uniform(0, 255);int g = rng.uniform(0, 255);int b = rng.uniform(0, 255);colors.push_back(Vec3b(r, g, b));	
}
//给marker着色
Mat finalResult = Mat::zeros(dist.size(), CV_8UC3);//三通道彩色图像
int index = 0;
for (int row = 0; row < markers.rows; row++) {for (int col = 0; col < markers.cols; col++) {index = markers.at<uchar>(row, col);if (index > 0 && index <= contours.size()) {finalResult.at<Vec3b>(row, col) = colors[index - 1];}else {finalResult.at<Vec3b>(row, col) = Vec3b(255, 255, 255);}}
}
imshow("finalResult", finalResult);

9.跟原始图像融合

Mat wdst;
addWeighted(finalResult,0.6,image,0.4,0, wdst);
imshow("wdst", wdst);

threshold函数

threshold( InputArray src, OutputArray dst, double thresh, double maxval,type 
);
//参数1:输入的灰度图像
//参数2:输出图像
//参数3:进行阈值操作时阈值的大小
//参数4:设定的最大灰度值(该参数运用在二进制与反二进制阈值操作中)
//参数5:阈值的类型。从下面提到的5种中选择出的结果
THRESH_BINARY=0: 二进制阈值
THRESH_BINARY_INV=1: 反二进制阈值
THRESH_TRUNC=2: 截断阈值
THRESH_TOZERO=3: 0阈值
THRESH_TOZERO_INV=4: 反0阈值
THRESH_OTSU=8   自适应閾值

(1)正向二值化,THRESH_BINARY

正向二值化,如果当前的像素值大于设置的阈值(thresh),则将该点的像素值设置为maxval;否则,将该点的像素值设置为0;

(2)反向二值化,THRESH_BINARY_INV

反向二值化,如果当前的像素值大于设置的阈值(thresh),则将该点的像素值设置为0;否则,将该点的像素值设置为maxval

(3)THRESH_TRUNC

如果当前的像素值大于设置的阈值(thresh),则将该点的像素值设置为threshold;否则,将该点的像素值不变

(4)THRESH_TOZERO

如果当前的像素值大于设置的阈值(thresh),则将该点的像素值不变;否则,将该点的像素值设置为0

THRESH_TOZERO_INV

如果当前的像素值大于设置的阈值(thresh),则将该点的像素值设置为0;否则,将该点的像素值不变

adaptiveThreshold函数

void adaptiveThreshold(InputArray src,OutputArray dst,double maxValue,int adaptiveMethod,int thresholdType,int blockSize,double C
);
第一个参数,InputArray src,原图,即输入图像,是一个8位单通道的图像;
第二个参数,OutputArray dst,目标图像,与原图像具有同样的尺寸与类型;
第三个参数,double maxValue,分配给满足条件的像素的非零值;
第四个参数,int adaptiveMethod,自适应阈值的方法,通常有以下几种方法;ADAPTIVE_THRESH_MEAN_C,阈值T(x,y)是(x,y)减去C的Blocksize×Blocksize
邻域的平均值。ADAPTIVE_THRESH_GAUSSIAN_C ,阈值T(x,y)是(x,y)减去C的Blocksize×Blocksize
邻域的加权和(与高斯相关),默认sigma(标准差)用于指定的Blocksize;具体的情况可以参见getGaussianKernel函数;
第五个参数,int thresholdType,阈值的类型必须是以下两种类型,THRESH_BINARY,正向二值化THRESH_BINARY_INV ,反向二值化
第六个参数,int blockSize,计算blocksize x blocksize大小的领域内的阈值,必须为奇数,
例如,3,5,7等等,一般二值化使用21,31,41;
第七个参数,double C,从平均数或加权平均数减去常量。通常,它是正的,但也可能是零或负数。
二值化时使用的7。
补充
函数cvAdaptiveThreshold的确可以将灰度图像二值化,但它的主要功能应该是边缘提取,
关键是里面的block_size参数,该参数是决定局部阈值的block的大小
1)当block很小时,如block_size=3 or 5 or 7时,“自适应”的程度很高,
即容易出现block里面的像素值都差不多,这样便无法二值化,而只能在边缘等梯度大的地方实现二值化
,结果显得它是边缘提取函数;
2)当把block_size设为比较大的值时,如block_size=21 or 31 or 41时,cvAdaptiveThreshold便是
二值化函数了;
3)src与dst 这两个都要是单通道的图像。

findContours函数

void findContours (InputOutputArray      image,       // 输入图像OutputArrayOfArrays   contours,    // 检测到的轮廓OutputArray           hierarchy,   // 可选的输出向量int       mode,            
// 轮廓获取模式 (RETR_EXTERNAL, RETR_LIST, RETR_CCOMP,RETR_TREE, RETR_FLOODFILL)int       method,          
// 轮廓近似算法 (CHAIN_APPROX_NONE, CHAIN_APPROX_SIMPLE, CHAIN_APPROX_TC89_L1, CHAIN_APPROX_TC89_KCOS)Point     offset = Point() // 轮廓偏移量
)hierarchy 为可选的参数,如果不选择该参数,则可得到 findContours 函数的第二种形式
void findContours (InputOutputArray   image,OutputArrayOfArrays contours,int    mode,int    method,Point   offset = Point()
)drawContours() 函数如下: 
void drawContours (InputOutputArray     image,         // 目标图像InputArrayOfArrays   contours,      // 所有的输入轮廓int               contourIdx,      //const Scalar &     color,           //  轮廓颜色int          thickness = 1,         //  轮廓线厚度int          lineType = LINE_8,     //InputArray   hierarchy = noArray(), //int          maxLevel = INT_MAX,    //Point        offset = Point()       //    
)

 watershed函数

watershed(src,markers);
src:原图像
markers:目标markers,生成markers是通过findContours边沿查找+drawContours来实现的。
ps:这一步非常重要,有了marker就可以使用分水岭算法了。

distanceTransform函数 

distanceTransform()距离变换的定义是计算一个图像中非零像素点到最近的零像素点的
距离,也就是到零像素点的最短距离。即距离变换的定义是计算一个图像中非零像素点到
最近的零像素点的距离,也就是到零像素点的最短距离。
通常处理的是一个二值化的图,所以求距离可以归一化,距离(像素距离)单位为1。
void distanceTransform(InputArray src, OutputArray dst, int distanceType, int maskSize, int dstType=CV_32F )
void distanceTransform(InputArray src, OutputArray dst, OutputArray labels, int distanceType, int maskSize, int labelType=DIST_LABEL_CCOMP )
src:源矩阵
dst:目标矩阵
distanceType:距离类型。可以的类型是CV_DIST_L1、CV_DIST_L2、CV_DIST_C,具体各
类型的意义,请查阅相关算法文档。
maskSize:距离变换运算时的掩码大小。值可以是3、5或CV_DIST_MASK_PRECISE
(5或CV_DIST_MASK_PRECISE只能用在第一个原型中)。
当distanceType=CV_DIST_L1 或 CV_DIST_C时,maskSize只能为3。
dstType:输出图像(矩阵)的类型,可以是CV_8U 或 CV_32F。CV_8U只能用在第一个原型中,
而且distanceType只能为CV_DIST_L1。
labels:输出二维阵列标签。
labelType:标签数组类型。可选值为DIST_LABEL_CCOMP和DIST_LABEL_PIXEL

原图片

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 【Redis】Centos 安装 Redis
  • 橙子质量检测系统源码分享
  • 人工智能之机器学习常见算法
  • 机器学习(1)sklearn的介绍和六个主要模块、估计器、模型持久化
  • 代码随想录Day53|102.沉没孤岛 、103.水流问题 、104.建造最大岛屿
  • 程序编译的四个阶段
  • Ubuntu20.04配置NVIDIA+CUDA12.2+CUDNN【附所有下载资源】【亲测有效】【非常详细】
  • docker的核心概念整理:docker-compose
  • Skyvern:基于LLM和CV的开源RPA
  • sudo 命令:掌握系统权限控制,实现安全高效管理
  • 安卓中有main函数吗?
  • Qwen2-VL论文阅读笔记
  • 智慧安防监控EasyCVR视频汇聚管理平台如何修改视频流分辨率?
  • 从零开始之AI面试小程序
  • 网站建设中,JavaScript为什么现在可以做后台了?
  • crontab执行失败的多种原因
  • Java 9 被无情抛弃,Java 8 直接升级到 Java 10!!
  • JDK9: 集成 Jshell 和 Maven 项目.
  • js算法-归并排序(merge_sort)
  • k8s 面向应用开发者的基础命令
  • vue+element后台管理系统,从后端获取路由表,并正常渲染
  • 面试题:给你个id,去拿到name,多叉树遍历
  • 前端 CSS : 5# 纯 CSS 实现24小时超市
  • 我与Jetbrains的这些年
  • - 语言经验 - 《c++的高性能内存管理库tcmalloc和jemalloc》
  • ionic入门之数据绑定显示-1
  • PostgreSQL 快速给指定表每个字段创建索引 - 1
  • 关于Android全面屏虚拟导航栏的适配总结
  • 我们雇佣了一只大猴子...
  • ​Python 3 新特性:类型注解
  • ​ssh免密码登录设置及问题总结
  • #### golang中【堆】的使用及底层 ####
  • #我与Java虚拟机的故事#连载01:人在JVM,身不由己
  • #我与Java虚拟机的故事#连载05:Java虚拟机的修炼之道
  • $$$$GB2312-80区位编码表$$$$
  • (2024,RWKV-5/6,RNN,矩阵值注意力状态,数据依赖线性插值,LoRA,多语言分词器)Eagle 和 Finch
  • (8)Linux使用C语言读取proc/stat等cpu使用数据
  • (LeetCode) T14. Longest Common Prefix
  • (附源码)计算机毕业设计SSM疫情居家隔离服务系统
  • (十三)Flink SQL
  • (原)记一次CentOS7 磁盘空间大小异常的解决过程
  • (转)关于pipe()的详细解析
  • .NET 使用 ILMerge 合并多个程序集,避免引入额外的依赖
  • .NET 依赖注入和配置系统
  • .netcore 6.0/7.0项目迁移至.netcore 8.0 注意事项
  • .NET中winform传递参数至Url并获得返回值或文件
  • .w文件怎么转成html文件,使用pandoc进行Word与Markdown文件转化
  • @param注解什么意思_9000字,通俗易懂的讲解下Java注解
  • @RequestParam @RequestBody @PathVariable 等参数绑定注解详解
  • @TableId注解详细介绍 mybaits 实体类主键注解
  • [ CTF ] WriteUp- 2022年第三届“网鼎杯”网络安全大赛(朱雀组)
  • [ CTF ] WriteUp-2022年春秋杯网络安全联赛-冬季赛
  • [ 云计算 | Azure 实践 ] 在 Azure 门户中创建 VM 虚拟机并进行验证
  • [000-01-030].Zookeeper学习大纲
  • [17]JAVAEE-HTTP协议