当前位置: 首页 > news >正文

简单聊聊C/C++中的左值和右值

文章目录

  • 前言
  • 问题
  • 历史渊源
  • 认识左值和右值
  • 具体的示例
    • 最简单的赋值语句
    • 自增自减运算
      • 前置自增
      • 后置自增
      • 自增表达式赋值
    • 函数表达式
  • 总结

前言

为什么标题要写成简单聊聊,而不是写成什么“C++中左值与右值详解”或者现在很流行的“惊了!看了这一篇左值与右值讲解,他吊打了面试官”,其实带有详解这个词是需要勇气的,最起码要融会贯通之后才敢这么说吧,本来是学习右值引用的,结果涉及到了左值和右值,然后去了解他们历史发现也是有些混乱,操作中又经常涉及到运算符优先级,真是越学越乱了。

问题

索性也把右值引用放一边,从头来看看这个左值和右值,其实我跟这两个词一点都不熟,最多就是在编译报错的提示框中看到他们,当然有时候也会看到他们的英文名字 lvaluervalue,这时候一般就是编译器开始抱怨了,说我写了什么它不能理解的东西,其实嘛,我自己都没完全理解,从现在开始边学边总结了,先展示一个常见报错:

error: lvalue required as increment operand

这是什么意思,这么绕嘴,左值需要作为增长操作数,请说人话:自增操作需要一个可以赋值的变量作为操作数,需要变量就直说嘛,为什么要左值、右值的把人都绕蒙了。

历史渊源

这个世界一直是在变化的,可能之前你一直引以为豪的经验大楼,转眼之间就会倾塌。关于左值和右值的历史,普遍的观点是最初来源于 C 语言,后来被引入到了 C++,但是关于左值和右值的含义和实现却在一直改变和完善,对于它的历史讲解发现一篇总结的比较好的文章 《C/C++ 左值和右值, L-value和R-value》。

这是2012年的一篇文章,文中给出了历史说明依据,最后还举了一些例子来说明 CC++ 关于左值实现的不同,但是实际操作后你会发现,时间的车轮早已向前行进了一大截,文中提到的那些不同,在最新的 gccg++ 编译器上早已变得相同,文中提到的反例现在看来几乎没有意义了。

简单梳理下,左值的定义最早出现在 《The C Programming Language 》一书中,指的是引用一个对象,放在赋值表达式 = 左边的值。

后来在新的 C 语言标准中提到左值是赋值表达式 = 左边的值或者需要被改变的值,而等号的右边的值被称为右值。左值更好的表达为可以定位的值,而右值是一种表达数据的值,基于这个表述 L-value 可以理解为 locator value,代表可寻址,而 R-value 可以理解为 read value,代表可读取。

不过以上的新解,完全是人们为了理解左值、右值赋予的新含义,从历史发展来看,一开始左值和右值完全就是通过等号的左边和右边来命名的,只不过随着标准的完善和语言的发展、更替,虽然两个名字保留了下来,但是它们的含义却在逐步发生改变,与最初诞生时的 = 左右两边的值这个含义相比,已经相差很多了。

认识左值和右值

关于左值右值有几条规则和特点,先列举在这里,后面可以跟随例子慢慢体会:

  1. 左值和右值都是指的表达式,比如 int a = 1 中的 a 是左值,++a 是左值, func() 也可能是左值,而 a+1 是右值, 110 也是一个右值。
  2. 左值可以放在 = 的左边,右值只能放在 = 的右边,这其中隐含的意思就是左值也能放在 = 的右边,但是右值不能放在 = 的左边。
  3. 左值可以取地址,代表着内存中某个位置,可以存储数据,右值仅仅是一个值,不能取地址,或者它看起来是一个变量,但它是临时的无法取地址,例如一个函数的非引用的值返回。

以上规则从定义来看一点也不严谨,比如一个常量定义是可以赋值,后面就不行了,它也可以取地址,但是不能赋值的它到底是左值还是右值,这点其实不用纠结,心里知道这个情况就可以了。

再比如一个普通变量,它原本是一个左值,当用它给其他变量赋值的时候,它又化身为一个右值,这时它也可以取地址,好像与上面的说法相违背了,但是仔细想想真的是这样吗?它只是临时化身为右值,其实是一个左值,所以才可以取地址的。

其实你如果不做学术研究、不斤斤计较,那么完全可以把能够赋值的表达式作为左值,然后把左值以外的表达式看成右值,如果你不熟悉解左值和右值可能根本不会影响你平时的工作和学习,但是了解它有助于我们深入理解一些内置运算符和程序执行过程,以及在出现编译错误的时候及时定位问题。

具体的示例

最简单的赋值语句

int age = 18;

这个赋值语句很简单,= 作为分界线,左边的 age 是左值,可以被赋值,可以取地址,它其实就是一个表达式,代表一个可以存储整数的内存地址;右边的 18 也是一个表达式,明显只能作为右值,不能取地址。

18 = age;

这个语句在编译时会提示下面的错误:

error: lvalue required as left operand of assignment

错误提示显示:赋值语句的左边需要一个左值,显然 18 不能作为左值,它不代表任何内存地址,不能被改变。

如果程序中的表达式都这么简单就不需要纠结了,接着我们往下看一些复杂点的例子。

自增自减运算

++age++;

第一眼看到这个表达式,你感觉它会怎样运算,编译一下,你会发现编译失败了,错误如下:

error: lvalue required as increment operand

加个括号试试:

++(age++)

编译之后会出现相同的错误:

error: lvalue required as increment operand

再换一种加括号的方式再编译一次:

(++age)++

这次成功编译了,并且输出值之后发现 age 变量增加了两次。

先不考虑左值右值的问题,我们可以从这个例子中发现自增运算的优先级,后置自增 age++ 的优先级要高于前置自增 ++age 的优先级。

现在回过头来看看之前的编译错误,为什么我们加括号改变运算顺序之后就可以正常执行了呢?这其实和自增运算的实现有关。

前置自增

前置自增的一般实现,是直接修改原对象,在原对象上实现自增,然后将原对象以引用方式返回:

UPInt& UPInt::operator++()
{
 *this += 1;    // 原对象自增
 return *this;  // 返回原对象
}

这里一直操作的是原对象,返回的也是原对象的引用,所以前置自增表达式的结果是左值,它引用的是原对象之前所占用的内存。

后置自增

后置自增的一般实现,是先将原对象的数据存储到临时变量中,接着在原对象上实现自增,然后将临时变量以只读的方式返回:

const UPInt UPInt::operator++(int)
{
 UPInt oldValue = *this; // 将原对象赋值给临时变量
 ++(*this);              // 原对象自增
 return oldValue;        // 返回临时变量
}

这里返回的是临时变量,在函数返回后就被销毁了,无法对其取地址,所以后置自增表达式的结果是右值,不能对其进行赋值。

所以表达式 ++age++; 先进行后置自增,然后再进行前置自增就报出编译错误了,因为不能修改右值,也不能对右值进行自增操作。

自增表达式赋值

前面说到前置自增表达式是一个左值,那能不能对其赋值呢?当然可以!试试下面的语句:

++age = 20;

这条语句是可以正常通过编译的,并且执行之后 age 变量的值为 20

函数表达式

函数可以作为左值吗?带着这个疑问我们看一下这个赋值语句:

func() = 6;

可能有些同学会有疑问,这是正常的语句吗?其实它是可以正常的,只要 func() 是一个左值就可以,怎么才能让他成为一个左值呢,想想刚才的前置自增运算可能会给你启发,要想让他成为左值,它必须代表一个内存地址,写成下面这样就可以了。

int g;

int& func()
{
    return g;
}

int main()
{
    func() = 100;
}

函数 func() 返回的是全局变量 g 的引用,变量 g 是一个可取地址的左值,所以 func() 表达式也是一个左值,对其赋值后就改变了全局变量 g 的值。

那么我们注意到这里 func() 函数返回的是全局变量的引用,如果是局部变量会怎么样呢?

int& func()
{
    int i = 101;
    return i;
}

int main()
{
    func() = 100;
}

上面的代码编译没有错误,但是会产生一个警告,提示返回了局部变量的引用:

warning: reference to local variable ‘i’ returned [-Wreturn-local-addr]

运行之后可就惨了,直接显示段错误:

Segmentation fault (core dumped)

改为局部变量之后,func() 函数虽然返回了一个值,但是这个值是一个临时值,函数返回之后该值被销毁,对应的内存空间也不属于它了,所以在最后赋值的时候才会出现段错误,就和我们访问非法内存是产生的错误时一样的。

总结

  • 可以被赋值的表达式是左值,左值可以取地址。
  • 右值应该是一个表示值的表达式,不是左值的表达式都可以看成是右值
  • 后置自增操作符的优先级要高于前置自增操作符,它们是按照从右向左结合的
  • 关于左值和右值的知识点还有很多,后续想到了再补充,我也是边学边总结,如果有错误也欢迎小伙伴们及时指出,我会及时改正的

时刻静下来想想当初为什么出发,不要在现实的汪洋中偏离航向

相关文章:

  • C++11在左值引用的基础上增加右值引用
  • 汇编指令入门级整理
  • 使用c++filt命令还原C++编译后的函数名
  • 配置Beyond Compare 4作为git mergetool来解决git merge命令导致的文件冲突
  • git在回退版本时HEAD~和HEAD^的作用和区别
  • 对称加密、非对称加密、公钥、私钥究竟是个啥?
  • 认证、HTTPS、证书的基本含义
  • 码龄10年工作6年的搬砖小哥,最常访问的学习网站都在这里了
  • C++中的std::lower_bound()和std::upper_bound()函数
  • 根证书的应用和信任基础
  • Shell脚本中获取命令运行结果、特殊变量使用、条件判断等常用操作
  • gdb调试解决找不到源代码的问题
  • GDB调试指北大全
  • 小白眼中的docker究竟是个什么东西
  • GDB调试指北-启动GDB并查看说明信息
  • 【技术性】Search知识
  • axios请求、和返回数据拦截,统一请求报错提示_012
  • AzureCon上微软宣布了哪些容器相关的重磅消息
  • canvas实际项目操作,包含:线条,圆形,扇形,图片绘制,图片圆角遮罩,矩形,弧形文字...
  • chrome扩展demo1-小时钟
  • ES6核心特性
  • LeetCode18.四数之和 JavaScript
  • Map集合、散列表、红黑树介绍
  • nodejs实现webservice问题总结
  • Vue全家桶实现一个Web App
  • 从tcpdump抓包看TCP/IP协议
  • 动手做个聊天室,前端工程师百无聊赖的人生
  • 反思总结然后整装待发
  • 复杂数据处理
  • 关于 Linux 进程的 UID、EUID、GID 和 EGID
  • 理解在java “”i=i++;”所发生的事情
  • 用简单代码看卷积组块发展
  • 源码安装memcached和php memcache扩展
  • 在GitHub多个账号上使用不同的SSH的配置方法
  • ​ 无限可能性的探索:Amazon Lightsail轻量应用服务器引领数字化时代创新发展
  • ​【已解决】npm install​卡主不动的情况
  • ​你们这样子,耽误我的工作进度怎么办?
  • #LLM入门|Prompt#2.3_对查询任务进行分类|意图分析_Classification
  • #鸿蒙生态创新中心#揭幕仪式在深圳湾科技生态园举行
  • $jQuery 重写Alert样式方法
  • (5)STL算法之复制
  • (html5)在移动端input输入搜索项后 输入法下面为什么不想百度那样出现前往? 而我的出现的是换行...
  • (论文阅读40-45)图像描述1
  • (原創) 如何解决make kernel时『clock skew detected』的warning? (OS) (Linux)
  • (转)一些感悟
  • ***php进行支付宝开发中return_url和notify_url的区别分析
  • **Java有哪些悲观锁的实现_乐观锁、悲观锁、Redis分布式锁和Zookeeper分布式锁的实现以及流程原理...
  • .net MySql
  • .skip() 和 .only() 的使用
  • @AliasFor注解
  • @AutoConfigurationPackage的使用
  • @cacheable 是否缓存成功_Spring Cache缓存注解
  • @ConditionalOnProperty注解使用说明
  • @TableId注解详细介绍 mybaits 实体类主键注解
  • @Valid和@NotNull字段校验使用