当前位置: 首页 > news >正文

人工神经网络基本原理概述总结

人工神经网络原理的内容简介

为了满足读者应用人工神经网络解决实际问题的需要,书中还介绍了人工神经网络应用开发设计的全过程,并在附录中给出了BP神经网络实现预测、Hop6eld神经网络实现图像自联想记忆、模拟退火算法实现TSP和ARTI神经网络的源程序,供读者参考。

作为扩充知识,书中也简单介绍了人工神经网络的实现,以及人工神经网络技术与传统的基于规则的专家系统和模糊系统的融合。

《人工神经网络原理》既可作为计算机科学与技术、电子、通信与自动控制等相关专业的研究生和高年级本科生的参考书,也可作为相关专业领域的科研人员和工程技术人员的学习参考书。

谷歌人工智能写作项目:神经网络伪原创

神经网络算法原理

4.2.1概述人工神经网络的研究与计算机的研究几乎是同步发展的写作猫

1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。

神经网络技术在众多研究者的努力下,理论上日趋完善,算法种类不断增加。目前,有关神经网络的理论研究成果很多,出版了不少有关基础理论的著作,并且现在仍是全球非线性科学研究的热点之一。

神经网络是一种通过模拟人的大脑神经结构去实现人脑智能活动功能的信息处理系统,它具有人脑的基本功能,但又不是人脑的真实写照。它是人脑的一种抽象、简化和模拟模型,故称之为人工神经网络(边肇祺,2000)。

人工神经元是神经网络的节点,是神经网络的最重要组成部分之一。目前,有关神经元的模型种类繁多,最常用最简单的模型是由阈值函数、Sigmoid函数构成的模型(图4-3)。

图4-3人工神经元与两种常见的输出函数神经网络学习及识别方法最初是借鉴人脑神经元的学习识别过程提出的。

输入参数好比神经元接收信号,通过一定的权值(相当于刺激神经兴奋的强度)与神经元相连,这一过程有些类似于多元线性回归,但模拟的非线性特征是通过下一步骤体现的,即通过设定一阈值(神经元兴奋极限)来确定神经元的兴奋模式,经输出运算得到输出结果。

经过大量样本进入网络系统学习训练之后,连接输入信号与神经元之间的权值达到稳定并可最大限度地符合已经经过训练的学习样本。

在被确认网络结构的合理性和学习效果的高精度之后,将待预测样本输入参数代入网络,达到参数预测的目的。

4.2.2反向传播算法(BP法)发展到目前为止,神经网络模型不下十几种,如前馈神经网络、感知器、Hopfiled网络、径向基函数网络、反向传播算法(BP法)等,但在储层参数反演方面,目前比较成熟比较流行的网络类型是误差反向传播神经网络(BP-ANN)。

BP网络是在前馈神经网络的基础上发展起来的,始终有一个输入层(它包含的节点对应于每个输入变量)和一个输出层(它包含的节点对应于每个输出值),以及至少有一个具有任意节点数的隐含层(又称中间层)。

在BP-ANN中,相邻层的节点通过一个任意初始权值全部相连,但同一层内各节点间互不相连。

对于BP-ANN,隐含层和输出层节点的基函数必须是连续的、单调递增的,当输入趋于正或负无穷大时,它应该接近于某一固定值,也就是说,基函数为“S”型(Kosko,1992)。

BP-ANN的训练是一个监督学习过程,涉及两个数据集,即训练数据集和监督数据集。

给网络的输入层提供一组输入信息,使其通过网络而在输出层上产生逼近期望输出的过程,称之为网络的学习,或称对网络进行训练,实现这一步骤的方法则称为学习算法。

BP网络的学习过程包括两个阶段:第一个阶段是正向过程,将输入变量通过输入层经隐层逐层计算各单元的输出值;第二阶段是反向传播过程,由输出误差逐层向前算出隐层各单元的误差,并用此误差修正前层权值。

误差信息通过网络反向传播,遵循误差逐步降低的原则来调整权值,直到达到满意的输出为止。

网络经过学习以后,一组合适的、稳定的权值连接权被固定下来,将待预测样本作为输入层参数,网络经过向前传播便可以得到输出结果,这就是网络的预测。

反向传播算法主要步骤如下:首先选定权系数初始值,然后重复下述过程直至收敛(对各样本依次计算)。

(1)从前向后各层计算各单元Oj储层特征研究与预测(2)对输出层计算δj储层特征研究与预测(3)从后向前计算各隐层δj储层特征研究与预测(4)计算并保存各权值修正量储层特征研究与预测(5)修正权值储层特征研究与预测以上算法是对每个样本作权值修正,也可以对各个样本计算δj后求和,按总误差修正权值。

什么是人工神经网络?

一.一些基本常识和原理[什么叫神经网络?]人的思维有逻辑性和直观性两种不同的基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

[人工神经网络的工作原理]人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

=================================================关于一个神经网络模拟程序的下载人工神经网络实验系统(BP网络)V1.0Beta作者:沈琦作者关于此程序的说明:从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值0.515974。

而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果P*Out1:0.520051看到了吗?"大脑"识别出了4和11是属于第二类的!

怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!=================================================人工神经网络论坛(旧版,枫舞推荐)国际神经网络学会(INNS)(英文)欧洲神经网络学会(ENNS)(英文)亚太神经网络学会(APNNA)(英文)日本神经网络学会(JNNS)(日文)国际电气工程师协会神经网络分会研学论坛神经网络;sty=1&age=0人工智能研究者俱乐部2nsoft人工神经网络中文站=================================================推荐部分书籍:人工神经网络技术入门讲稿(PDF)神经网络FAQ(英文)数字神经网络系统(电子图书)神经网络导论(英文)===============================================一份很有参考价值的讲座是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.。

人工神经网络,人工神经网络是什么意思

一、人工神经网络的概念人工神经网络(ArtificialNeuralNetwork,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。

该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。

它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。

每个节点代表一种特定的输出函数,称为激活函数(activationfunction)。

每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。

而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。

人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。

另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。

输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。

神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。

二、人工神经网络的发展神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

1.第一阶段----启蒙时期(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。

1943年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。

在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。

(2)、Hebb规则:1949年,心理学家赫布(Hebb)出版了《TheOrganizationofBehavior》(行为组织学),他在书中提出了突触连接强度可变的假设。

这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。

这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。

(3)、感知器模型:1957年,罗森勃拉特(Rosenblatt)以M-P模型为基础,提出了感知器(Perceptron)模型。

感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。

这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。

Rosenblatt证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。

Rosenblatt的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。

(4)、ADALINE网络模型:1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptivelinearelement,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。

ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

2.第二阶段----低潮时期人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。

这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。

(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizingfeaturemap)。

后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。

它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。

这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。

(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(AdaptiveResonanceTheory),其学习过程具有自组织和自稳定的特征。

3.第三阶段----复兴时期(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。

在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。

1984年,Hopfield又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。

1985年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(TravellingSalesmanProblem)。Hopfield神经网络是一组非线性微分方程。

Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。

因为Hopfield神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。

(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。

1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。

Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann机模型。

(3)、BP神经网络模型:1986年,儒默哈特(melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(ErrorBack-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。

(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《ParallelDistributedProcessing:ExplorationintheMicrostructuresofCognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。

可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。

(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。

Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。

(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。

(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasisfunction,RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。

(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。

(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。

通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。

(11)、90年代初,Vapnik等提出了支持向量机(Supportvectormachines,SVM)和VC(Vapnik-Chervonenkis)维数的概念。

经过多年的发展,已有上百种的神经网络模型被提出。

深度学习中什么是人工神经网络?

人工神经网络(ArtificialNeuralNetwork,即ANN)是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

人工神经网络具有四个基本特征:(1)非线性–非线性关系是自然界的普遍特性,人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性人工神经网络关系。

具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。(2)非局限性–一个神经网络通常由多个神经元广泛连接而成。

一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

(3)非常定性–人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性–一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。

非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。

网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能人工神经网络由系统外部观察的单元。

神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

总结:人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

什么是人工神经网络?

 

相关文章:

  • Zemax操作38--POP(物理光学传播)的用法
  • (小白学Java)Java简介和基本配置
  • Cyanine5.5 tetrazine|Cy5.5-tetrazine|花青素Cy5.5四嗪
  • 阿里巴巴、阿里云Java面试题、笔试题(含答案)
  • git常用操作总结
  • 如何用小程序端进行测试?
  • CREO:CREO软件之工程图【布局】之一般视图、投影视图、详细视图、局部剖视图、向视图、局部放大视图、旋转剖视图的简介及其使用方法(图文教程)之详细攻略
  • 【网络通信】websocket如何断线重连
  • T Chat 第九期「 李泽磊 - 我在百度做阅读器 」9 月 1 日晚 8 点开播
  • Git从入门到项目实战,一篇文章吃透Git
  • 1.5-36:计算多项式的值
  • uniapp 学习笔记二十一 路由跳转及产品详情数据渲染
  • 怎么预防鸡葡萄球菌病 防治鸡球菌病的特效药
  • 阿里巴巴中国站1688按关键词搜索商品api电商数据接口
  • 艺术大观杂志艺术大观杂志社艺术大观编辑部2022年第20期目录
  • SegmentFault for Android 3.0 发布
  • [译]CSS 居中(Center)方法大合集
  • 《Java编程思想》读书笔记-对象导论
  • Docker 笔记(2):Dockerfile
  • JAVA SE 6 GC调优笔记
  • JavaSE小实践1:Java爬取斗图网站的所有表情包
  • LeetCode541. Reverse String II -- 按步长反转字符串
  • MySQL-事务管理(基础)
  • session共享问题解决方案
  • Tornado学习笔记(1)
  • 翻译--Thinking in React
  • 漫谈开发设计中的一些“原则”及“设计哲学”
  • 让你的分享飞起来——极光推出社会化分享组件
  • 使用 5W1H 写出高可读的 Git Commit Message
  • 使用Maven插件构建SpringBoot项目,生成Docker镜像push到DockerHub上
  • 使用SAX解析XML
  • 算法---两个栈实现一个队列
  • 我的面试准备过程--容器(更新中)
  • 我是如何设计 Upload 上传组件的
  • 我这样减少了26.5M Java内存!
  • - 转 Ext2.0 form使用实例
  • JavaScript 新语法详解:Class 的私有属性与私有方法 ...
  • ​DB-Engines 12月数据库排名: PostgreSQL有望获得「2020年度数据库」荣誉?
  • #Js篇:单线程模式同步任务异步任务任务队列事件循环setTimeout() setInterval()
  • $.type 怎么精确判断对象类型的 --(源码学习2)
  • (env: Windows,mp,1.06.2308310; lib: 3.2.4) uniapp微信小程序
  • (LeetCode) T14. Longest Common Prefix
  • (二)c52学习之旅-简单了解单片机
  • (附源码)springboot电竞专题网站 毕业设计 641314
  • (附源码)ssm高校社团管理系统 毕业设计 234162
  • (七)理解angular中的module和injector,即依赖注入
  • (一)基于IDEA的JAVA基础10
  • (转载)虚函数剖析
  • (轉貼) VS2005 快捷键 (初級) (.NET) (Visual Studio)
  • .Net Framework 4.x 程序到底运行在哪个 CLR 版本之上
  • .NET 材料检测系统崩溃分析
  • .NET/C# 阻止屏幕关闭,阻止系统进入睡眠状态
  • [ IOS ] iOS-控制器View的创建和生命周期
  • [<死锁专题>]
  • [2019.2.28]BZOJ4033 [HAOI2015]树上染色