当前位置: 首页 > news >正文

【电路笔记】-谐波

谐波

文章目录

  • 谐波
    • 1、概述
    • 2、频谱分析
    • 3、已知信号
    • 4、未知信号
    • 5、总结

周期性信号并不总是完美的正弦模式,例如我们之前有关 正弦波的文章之一中介绍的那样。 有时,信号确实可以是简单正弦波的叠加,它们被称为复杂波形。

在本文中,我们将重点关注复杂的周期性波形,以了解它们的组成以及如何分析它们。

首先,我们介绍谐波的概念以及频谱表示。 在第二部分中,我们重点关注谱分析,这是基于傅立叶级数的分析谐波的数学工具。

1、概述

假设一个周期信号 s ( t ) s(t) s(t),它是两个称为谐波 y 0 ( t ) y_0(t) y0(t) y 1 ( t ) y_1(t) y1(t) 的正弦波形的叠加,它们的频率和幅度满足 ω 1 = 2 ω 0 \omega_1=2\omega_0 ω1=2ω0 A 0 = 2 A 1 A_0=2A_1 A0=2A1。 因此,它们的表达式由 y 0 ( t ) = A 0 sin ⁡ ( ω 0 t ) y_0(t)=A_0\sin(\omega_0t) y0(t)=A0sin(ω0t) y 1 ( t ) = A 1 sin ⁡ ( ω 1 t ) y_1(t)=A_1\sin(\omega_1t) y1(t)=A1sin(ω1t) 给出。 图 1 显示了与结果信号 s ( t ) s(t) s(t) 分开的谐波 y 0 ( t ) y_0(t) y0(t) y 1 ( t ) y_1(t) y1(t)

在这里插入图片描述

图1:复杂波形及其谐波的表示

在此示例中, y 0 ( t ) y_0(t) y0(t) 称为基波, y 1 ( t ) y_1(t) y1(t) 称为一次谐波。 基波谐波是频率较低的信号,它给出了结果信号 s ( t ) s(t) s(t) 的周期性:我们确实可以看到 ω 0 = ω S ω_0=ω_S ω0=ωS

因此,谐波是复杂波形的“构建”函数,但是,它们的频率不是随机的,并且始终满足 ω 0 = ω S ω_0=ω_S ω0=ωS ω 1 = 2 ω 0 ω_1=2ω_0 ω1=2ω0 ω 2 = 3 ω 0 ω_2=3ω_0 ω2=3ω0(如果存在二次谐波)等等……在一般情况下, 第n次谐波的频率满足关系式 ω n = ( n + 1 ) × ω 0 ω_n=(n+1)\times ω_0 ωn=(n+1)×ω0

当给定特定的复杂波形时,一种非常合适的表示形式称为信号的频谱。 这种表示方法包括绘制每个谐波的幅度作为频率的函数,并且可以通过 Python 或 MatLab 等数值程序进行计算:

在这里插入图片描述

图2:s(t)的频谱

检查 s ( t ) s(t) s(t) 的频谱,可以清楚地看到基波信号的频率为 f 0 = 15 / 2 π = 2.4 H z f_0=15/2\pi=2.4Hz f0=15/2π=2.4Hz,幅度 A 0 = 1 A_0=1 A0=1(例如 V V V A A A),而一次谐波的频率为 2 f 0 = 4.8 H z 2f_0=4.8Hz 2f0=4.8Hz,振幅 A 1 = 0.5 A_1=0.5 A1=0.5

2、频谱分析

绘制如图 2 所示的频谱是基于称为傅立叶级数的数学工具。 这种方法是在19世纪初期由法国科学家约瑟夫·傅立叶提出的,至今仍然是信号分析的主要工具之一。

该方法基于这样的观察:任何周期信号 y ( t ) y(t) y(t) 实际上都是可以计算幅度和相位的谐波的无限和(一系列)。 同样的观察可以写成一个数学方程:

在这里插入图片描述

等式1:将周期信号分解为傅立叶级数

复指数项只是写谐波的复数形式(请参阅复数这篇文章)。 整数n指的是第n次谐波,T是 y ( t ) y(t) y(t)的周期。

系数 c n ( y ) c_n(y) cn(y) 称为函数 y ( t ) y(t) y(t)的傅里叶系数,由以下关系确定:

在这里插入图片描述

等式2:傅里叶系数

通常将系数 c n c_n cn 分为两个系数 a n a_n an b n b_n bn,对于实函数,这两个系数由下式给出:

在这里插入图片描述

等式3:实函数的简化傅立叶系数

这种确定任何周期信号的傅里叶分解的方法,因此给出如图 2 所示的频谱,也称为傅里叶变换 (FT),它是针对非周期信号的相同方法的扩展。

需要分别考虑两种情况才能进行周期信号的 FT,并在以下小节中进行解释。

3、已知信号

第一种情况是要分解的信号是否具有已知的解析表达式。 例如,考虑周期性为 T 的方波信号 s q ( t ) sq(t) sq(t)。其表达式通过以下定义可知:

在这里插入图片描述

图 3 表示几个周期内周期 T = 2 π T=2\pi T=2π 的方波信号:

在这里插入图片描述

图3:方波信号示意图

首先,我们确定项 a 0 a_0 a0 的表达式:

在这里插入图片描述
该系数表示信号的平均值: y ( t ) y(t) y(t),并且在一半的时间内确实等于 1,否则等于 0。 请注意,由于 sin ⁡ ( 0 ) = 0 \sin(0)=0 sin(0)=0,因此项 b 0 b_0 b0 等于 0。

当开发 n > 0 n>0 n>0 a n a_n an 表达式时,我们意识到这些系数与在 0 和 π \pi π 之间计算的 sin ⁡ ( n x ) \sin(nx) sin(nx) 成正比,它始终等于 0,因此 ( a n ) n > 0 = 0 (a_n)_{n>0}=0 (an)n>0=0

最后,我们确定 n > 0 n>0 n>0 时系数 b n b_n bn 的一般表达式:

在这里插入图片描述
当在 0 和 π \pi π 之间求值时,如果 n 为奇数,则 cos ⁡ ( n x ) \cos(nx) cos(nx) 项等于 -2;如果 n 为偶数,则 cos ⁡ ( n x ) \cos(nx) cos(nx)等于 0。 ( b n ) n > 0 (b_n)_{n>0} (bn)n>0 的最终表达式由下式给出:

在这里插入图片描述
每个系数 b n b_n bn 对应于谐波 sin ⁡ ( n t ) \sin(nt) sin(nt) 的幅度。 因此,根据 a 0 a_0 a0 b n b_n bn 的表达式,我们可以给出方波信号 s q ( t ) sq(t) sq(t) 的完整傅里叶展开:

在这里插入图片描述

等式:周期2π方波信号的傅立叶展开

根据等式4,我们可以绘制 s q ( t ) sq(t) sq(t) 的频谱的一部分,如下图 4 所示:

在这里插入图片描述

图4:方波信号的频谱 sq(t)

对于该信号,仅存在奇次谐波,其幅度由 2 / n π 2/n\pi 2/ 给出,频率由 n / 2 π n/2\pi n/2π 给出。 请注意,平均值也出现在 0Hz 频率的频谱中。 由于方波信号呈现无限数量的谐波,因此频谱当然仅显示到特定频率。

例如,当使用函数发生器生成方波信号时,仅采用有限数量的谐波来构建波形。 例如,如果我们使用谐波 1、2、3、4 和 5,我们称信号是使用直到五阶的谐波生成的,阶数给出了形状的准确度:

在这里插入图片描述

图5:使用谐波分解对方波信号进行两种近似图

当近似阶数增加时,我们可以查明在不连续性跳跃周围出现过冲(信号从 0 到 1 或从 1 到 0 残酷地交替)。 这被称为吉布斯现象(Gibbs Phenomenon),并且出现在存在不连续跳跃的每个信号中。

4、未知信号

让我们重新考虑演示部分中给出的示例,并解释数值程序如何确定 s ( t ) s(t) s(t)的傅立叶分解。 在图 1 中,我们可以测量 s ( t ) s(t) s(t) 的周期性为 T = 0.42 s T=0.42s T=0.42s

第一个系数 c 0 ( y ) c_0(y) c0(y)很容易确定,在我们的示例中等于 0,因为围绕水平轴对称的周期信号在一个周期内的积分始终等于 0。实际上,该第一个系数始终与 直流量,因此是平均值,这在我们的例子中不存在。

当函数 s ( t ) s(t) s(t)的表达式已知时,可以分析计算系数 c n c_n cn,如上一小节所示。 然而,对于未知函数 s ( t ) , n > 0 s(t),n>0 s(t)n>0时的系数 a n ( y ) an(y) an(y) b n ( y ) bn(y) bn(y) 通过计算 − T / 2 -T/2 T/2 T / 2 T/2 T/2(或 0 和 T T T)之间的面积来数值确定 函数 s ( t ) cos ⁡ ( 2 π n t / T ) s(t)\cos(2\pi nt/T) s(t)cos(2πnt/T) s ( t ) sin ⁡ ( 2 π n t / T ) s(t)\sin(2\pi nt/T) s(t)sin(2πnt/T)的曲线。

这可以通过多种方法来完成,最容易实现和理解的方法之一是矩形方法,其思想如图 6 中的函数 s ( t ) sin ⁡ ( 2 π t / T ) s(t)\sin(2\pi t/T) s(t)sin(2πt/T)所示:

在这里插入图片描述

图6:矩形法图解

如图 5 所示,该方法包括通过对宽度为 d t dt dt 和高度为 y ( n × d t ) y(n\times dt) y(n×dt)的小矩形面积求和来近似曲线的积分,其中 n n n是所考虑矩形的索引。

信号 y ( t ) y(t) y(t)的周期T被细分为 N N N个矩形,例如 N × d t = T N\times dt=T N×dt=T。 当 d t dt dt 足够小时,矩形面积之和约等于 y ( t ) y(t) y(t)在一段时间内的积分:

在这里插入图片描述

值得一提的是,为了更好地收敛到精确结果,存在更精确的方法,例如通过选择矩形以外的其他形状来更准确地遵循曲线。

5、总结

  • 如本文第一部分所述,谐波是形成任何周期信号的基本正弦波形。 一些复杂波形可以具有有限数量的谐波,而其他波形则具有无限数量,例如本文后面介绍的方波信号。
  • 谐波的频率始终是复信号基频的整数倍。 它们的幅度通常向高频方向减小,并且可以通过傅里叶分解来确定。
  • 频谱表示是突出显示信号谐波的最方便的方法,它是通过第二部分中介绍的傅里叶分解来计算的。 如果复杂波形的表达式已知,则分解可以是解析的;如果信号未知,则分解可以是数值的。

相关文章:

  • 人工智能领域CCF推荐国际学术刊物最新目录(全)
  • 自动驾驶学习笔记(六)——Apollo安装
  • 力扣160. 相交链表
  • 【JavaScript】window 对象、location 对象、navigator 对象和 history 对象
  • 解密 docker 容器内 DNS 解析原理
  • 从信号中去除 60 Hz 杂声
  • 如何设置OBS虚拟摄像头给钉钉视频会议使用
  • 学习Opencv(蝴蝶书/C++)相关——1. 前言 和 第1章.概述
  • 企业财务数字化转型的机遇有哪些?_光点科技
  • 【Mac环境搭建】JDK安装、多JDK安装与切换
  • Mysql库操作
  • Debug技巧-不启用前端访问后端
  • [MICROSAR Adaptive] --- autosar官方文档阅读建议
  • 【算法】昂贵的聘礼(dijkstra算法)
  • 力扣日记11.5-【二叉树篇】二叉树的迭代遍历
  • Google 是如何开发 Web 框架的
  • JavaScript 如何正确处理 Unicode 编码问题!
  • angular2 简述
  • Bootstrap JS插件Alert源码分析
  • github指令
  • JavaScript 奇技淫巧
  • Javascript基础之Array数组API
  • Java应用性能调优
  • maya建模与骨骼动画快速实现人工鱼
  • Promise面试题,控制异步流程
  • 翻译--Thinking in React
  • 基于Mobx的多页面小程序的全局共享状态管理实践
  • 力扣(LeetCode)56
  • 让你的分享飞起来——极光推出社会化分享组件
  • 设计模式走一遍---观察者模式
  • 我建了一个叫Hello World的项目
  • 移动端唤起键盘时取消position:fixed定位
  • 京东物流联手山西图灵打造智能供应链,让阅读更有趣 ...
  • ​水经微图Web1.5.0版即将上线
  • #我与Java虚拟机的故事#连载16:打开Java世界大门的钥匙
  • (1)(1.19) TeraRanger One/EVO测距仪
  • (Repost) Getting Genode with TrustZone on the i.MX
  • (SpringBoot)第七章:SpringBoot日志文件
  • (WSI分类)WSI分类文献小综述 2024
  • (二十一)devops持续集成开发——使用jenkins的Docker Pipeline插件完成docker项目的pipeline流水线发布
  • (附源码)springboot“微印象”在线打印预约系统 毕业设计 061642
  • (附源码)计算机毕业设计SSM保险客户管理系统
  • (转)真正的中国天气api接口xml,json(求加精) ...
  • (自用)learnOpenGL学习总结-高级OpenGL-抗锯齿
  • .net 4.0 A potentially dangerous Request.Form value was detected from the client 的解决方案
  • .net framwork4.6操作MySQL报错Character set ‘utf8mb3‘ is not supported 解决方法
  • .NET 实现 NTFS 文件系统的硬链接 mklink /J(Junction)
  • .net/c# memcached 获取所有缓存键(keys)
  • .Net6 Api Swagger配置
  • .Net8 Blazor 尝鲜
  • .sh
  • [ Linux ] Linux信号概述 信号的产生
  • [ 蓝桥杯Web真题 ]-布局切换
  • [Android]Tool-Systrace
  • [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)