当前位置: 首页 > news >正文

004 OpenCV akaze特征点检测匹配

目录

一、环境

二、akaze特征点算法

2.1、基本原理

2.2、实现过程

2.3、实际应用

2.4、优点与不足

三、代码

3.1、数据准备

3.2、完整代码


一、环境

本文使用环境为:

  • Windows10
  • Python 3.9.17
  • opencv-python 4.8.0.74

二、akaze特征点算法

特征点检测算法AKAZE是一种广泛应用于图像处理领域的算法,它可以在不同尺度下提取图像的特征点,并具有尺度不变性和旋转不变性等优点。本文将概括介绍AKAZE算法的基本原理、实现过程以及其在实际应用中的表现。

2.1、基本原理

AKAZE算法是基于尺度空间理论和图像金字塔的,它通过非线性扩散滤波来构建尺度空间,并在尺度空间中检测关键点。在AKAZE中,关键点的检测是通过一个称为“加速非线性扩散”的过程来实现的,该过程可以快速地生成尺度空间。此外,AKAZE还采用了M-LDB描述子来描述特征点的周围区域。

2.2、实现过程

  1. 图像预处理:首先,对输入图像进行预处理,包括灰度化和降噪等操作,以提高算法的准确性。
  2. 构建尺度空间:然后,通过非线性扩散滤波来构建尺度空间,并在尺度空间中检测关键点。在这个过程中,采用了一种称为“加速非线性扩散”的方法,该方法可以快速地生成尺度空间。
  3. 关键点检测:在尺度空间中,采用基于区域的方法来检测关键点。这些关键点对应于图像中的局部极值点,即在周围区域内具有最大或最小的灰度值。
  4. 描述子生成:在检测到关键点后,AKAZE采用M-LDB描述子来描述特征点的周围区域。M-LDB描述子是一种改进的LDB描述子,它可以更好地描述图像的特征。
  5. 特征匹配:最后,通过比较不同图像之间的M-LDB描述子来进行特征匹配,从而识别出图像中的相似区域。

2.3、实际应用

AKAZE算法在实际应用中表现出了良好的性能,可以应用于许多领域,如目标识别、图像配准、拼接等。例如,在目标识别中,AKAZE可以用于检测图像中的目标特征点,并通过特征匹配来识别出目标物体。此外,AKAZE还可以用于图像拼接中,通过对齐不同图像中的特征点来实现无缝拼接。

2.4、优点与不足

AKAZE算法具有以下优点:

  1. 尺度不变性:AKAZE算法能够在不同尺度下提取图像的特征点,从而适应了不同尺度的图像。
  2. 旋转不变性:AKAZE算法具有旋转不变性,可以在不同角度下提取图像的特征点。
  3. 加速性能:与SIFT算法相比,AKAZE算法采用了加速非线性扩散方法来构建尺度空间,具有更快的运行速度。
  4. 稳健性:AKAZE算法对噪声和干扰具有较强的鲁棒性,能够提取出较为稳健的特征点。

然而,AKAZE算法也存在一些不足之处:

  1. 对光照变化敏感:AKAZE算法对光照变化较为敏感,可能会受到光照变化的影响。
  2. 对局部变化敏感:AKAZE算法对局部变化较为敏感,可能会导致误检或漏检。
  3. 需要手动设置参数:AKAZE算法需要手动设置一些参数,如尺度空间级数、加速非线性扩散的迭代次数等。这些参数的设置会影响到算法的性能和准确性。

总之,特征点检测算法AKAZE是一种有效的图像特征提取方法,具有尺度不变性和旋转不变性等优点。在实际应用中表现出了良好的性能,可以应用于许多领域。然而,它也存在一些不足之处,如对光照变化敏感、对局部变化敏感以及需要手动设置参数等。未来可以进一步改进和完善AKAZE算法的性能和准确性。

三、代码

3.1、数据准备

代码需要的两张图,一个xml格式的文件,即:H1to3p.xml,如下:

<?xml version="1.0"?>
<opencv_storage>
<H13 type_id="opencv-matrix"><rows>3</rows><cols>3</cols><dt>d</dt><data>7.6285898e-01  -2.9922929e-01   2.2567123e+023.3443473e-01   1.0143901e+00  -7.6999973e+013.4663091e-04  -1.4364524e-05   1.0000000e+00 </data></H13>
</opencv_storage>

3.2、完整代码

代码:

from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
from math import sqrt# 读取两张图片
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png') # 在这里设置图像1
parser.add_argument('--input2', help='Path to input image 2.', default='graf3.png') # 在这里设置图像2
parser.add_argument('--homography', help='Path to the homography matrix.', default='H1to3p.xml') # 在这里设置H矩阵
args = parser.parse_args()img1 = cv.imread(cv.samples.findFile(args.input1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img1 is None or img2 is None:print('Could not open or find the images!')exit(0)
fs = cv.FileStorage(cv.samples.findFile(args.homography), cv.FILE_STORAGE_READ)
homography = fs.getFirstTopLevelNode().mat()## 初始化算法[AKAZE]
akaze = cv.AKAZE_create()
# 检测图像1和图像2的特征点和特征向量
kpts1, desc1 = akaze.detectAndCompute(img1, None)
kpts2, desc2 = akaze.detectAndCompute(img2, None)## 基于汉明距离,使用暴力匹配来匹配特征点
matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_BRUTEFORCE_HAMMING)
nn_matches = matcher.knnMatch(desc1, desc2, 2)## 下面0.8默认参数,可以手动修改、调试
matched1 = []
matched2 = []
nn_match_ratio = 0.8 # 最近邻匹配参数
for m, n in nn_matches:if m.distance < nn_match_ratio * n.distance:matched1.append(kpts1[m.queryIdx])matched2.append(kpts2[m.trainIdx])## 使用单应矩阵进行精匹配,进一步剔除误匹配点
inliers1 = []
inliers2 = []
good_matches = []
inlier_threshold = 2.5 # 如果两个点距离小于这个值,表明足够近,也就是一对匹配对
for i, m in enumerate(matched1):col = np.ones((3,1), dtype=np.float64)col[0:2,0] = m.ptcol = np.dot(homography, col)col /= col[2,0]dist = sqrt(pow(col[0,0] - matched2[i].pt[0], 2) +\pow(col[1,0] - matched2[i].pt[1], 2))if dist < inlier_threshold:good_matches.append(cv.DMatch(len(inliers1), len(inliers2), 0))inliers1.append(matched1[i])inliers2.append(matched2[i])## 可视化
res = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
cv.drawMatches(img1, inliers1, img2, inliers2, good_matches, res)
cv.imwrite("akaze_result.png", res)inlier_ratio = len(inliers1) / float(len(matched1))
print('A-KAZE Matching Results')
print('*******************************')
print('# Keypoints 1:                        \t', len(kpts1))
print('# Keypoints 2:                        \t', len(kpts2))
print('# Matches:                            \t', len(matched1))
print('# Inliers:                            \t', len(inliers1))
print('# Inliers Ratio:                      \t', inlier_ratio)cv.imshow('result', res)
cv.waitKey()

相关文章:

  • ArkTS - HarmonyOS服务卡片(创建)
  • 持续集成交付CICD:Jenkins Sharedlibrary 共享库
  • 给大伙讲个笑话:阿里云服务器开了安全组防火墙还是无法访问到服务
  • 「Tech初见」对epoll的理解
  • 前端食堂技术周刊第 105 期:TS 5.3 RC、Vite 5.0、W3C 新任 CEO、有害的 Pinia 模式、2024 更快的 Web
  • ROS参数服务器(Param):通信模型、Hello World与拓展
  • LongAdder功能和原理
  • 人工智能基础_机器学习044_逻辑回归代码实现与手动计算概率---人工智能工作笔记0084
  • 拼图小游戏
  • 【mac 解决eclipse意外退出】
  • ES6中实现继承
  • 解决更换NodeJs版本后npm -v返回空白
  • SAP 通过游标来分批从数据库表读取2G数据
  • 四旋翼无人机的飞行原理--【其利天下分享】
  • jupyter修改默认打开目录
  • Google 是如何开发 Web 框架的
  • 收藏网友的 源程序下载网
  • Akka系列(七):Actor持久化之Akka persistence
  • IDEA常用插件整理
  • Java|序列化异常StreamCorruptedException的解决方法
  • JavaScript异步流程控制的前世今生
  • Js实现点击查看全文(类似今日头条、知乎日报效果)
  • Less 日常用法
  • Material Design
  • SQLServer插入数据
  • Vue学习第二天
  • WebSocket使用
  • 使用阿里云发布分布式网站,开发时候应该注意什么?
  • 新版博客前端前瞻
  • 自动记录MySQL慢查询快照脚本
  • 《码出高效》学习笔记与书中错误记录
  • LevelDB 入门 —— 全面了解 LevelDB 的功能特性
  • Semaphore
  • ​520就是要宠粉,你的心头书我买单
  • ​Kaggle X光肺炎检测比赛第二名方案解析 | CVPR 2020 Workshop
  • ​MySQL主从复制一致性检测
  • #QT(一种朴素的计算器实现方法)
  • (1) caustics\
  • (1综述)从零开始的嵌入式图像图像处理(PI+QT+OpenCV)实战演练
  • (附源码)springboot车辆管理系统 毕业设计 031034
  • (十)c52学习之旅-定时器实验
  • (十六)Flask之蓝图
  • (推荐)叮当——中文语音对话机器人
  • .Net Core/.Net6/.Net8 ,启动配置/Program.cs 配置
  • .Net Framework 4.x 程序到底运行在哪个 CLR 版本之上
  • .NET 解决重复提交问题
  • .NET 中什么样的类是可使用 await 异步等待的?
  • .NET上SQLite的连接
  • .NET项目中存在多个web.config文件时的加载顺序
  • .NET与java的MVC模式(2):struts2核心工作流程与原理
  • .Net中的集合
  • .net中生成excel后调整宽度
  • .sdf和.msp文件读取
  • .sh
  • .vue文件怎么使用_我在项目中是这样配置Vue的