当前位置: 首页 > news >正文

Apollo Planning——换道:LANE_CHANGE_DECIDER

LaneChangeDeciderlanefollow 场景下,所调用的第一个task,它的作用主要有两点:判断当前是否进行变道,以及变道的状态,并将结果存在变量lane_change_status中;变道过程中将目标车道的reference line放置到首位,变道结束后将当前新车道的reference line放置到首位

LaneChangeDecider的具体逻辑如下:

1、PublicRoadPlanner 的 LaneFollowStage 配置了以下几个task 来实现具体的规划逻辑,LaneChangeDecider是第一个task:

scenario_type: LANE_FOLLOW
stage_type: LANE_FOLLOW_DEFAULT_STAGE
stage_config: {stage_type: LANE_FOLLOW_DEFAULT_STAGEenabled: truetask_type: LANE_CHANGE_DECIDERtask_type: PATH_REUSE_DECIDERtask_type: PATH_LANE_BORROW_DECIDERtask_type: PATH_BOUNDS_DECIDERtask_type: PIECEWISE_JERK_PATH_OPTIMIZERtask_type: PATH_ASSESSMENT_DECIDERtask_type: PATH_DECIDERtask_type: RULE_BASED_STOP_DECIDERtask_type: ST_BOUNDS_DECIDERtask_type: SPEED_BOUNDS_PRIORI_DECIDERtask_type: SPEED_HEURISTIC_OPTIMIZERtask_type: SPEED_DECIDERtask_type: SPEED_BOUNDS_FINAL_DECIDER# task_type: PIECEWISE_JERK_SPEED_OPTIMIZERtask_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZERtask_type: RSS_DECIDER
}

2、在stage阶段会依次调用每个 task 的 Execute() 函数,LaneChangeDecider继承自 Decider 类,Decider继承自基类 task 类,并且override了Execute() 方法;

modules/planning/tasks/task.h

class Task {public:explicit Task(const TaskConfig& config);Task(const TaskConfig& config,const std::shared_ptr<DependencyInjector>& injector);virtual ~Task() = default;const std::string& Name() const;const TaskConfig& Config() const { return config_; }virtual common::Status Execute(Frame* frame,ReferenceLineInfo* reference_line_info);virtual common::Status Execute(Frame* frame);protected:Frame* frame_ = nullptr;ReferenceLineInfo* reference_line_info_ = nullptr;TaskConfig config_;std::string name_;std::shared_ptr<DependencyInjector> injector_;
};

modules/planning/tasks/deciders/decider.h

class Decider : public Task {public:explicit Decider(const TaskConfig& config);Decider(const TaskConfig& config,const std::shared_ptr<DependencyInjector>& injector);virtual ~Decider() = default;apollo::common::Status Execute(Frame* frame, ReferenceLineInfo* reference_line_info) override;apollo::common::Status Execute(Frame* frame) override;protected:virtual apollo::common::Status Process(Frame* frame, ReferenceLineInfo* reference_line_info) {return apollo::common::Status::OK();}virtual apollo::common::Status Process(Frame* frame) {return apollo::common::Status::OK();}
};

重写Execute() 的代码在 modules/planning/tasks/deciders/decider.cc

apollo::common::Status Decider::Execute(Frame* frame, ReferenceLineInfo* reference_line_info) {Task::Execute(frame, reference_line_info);// 调用 子类 modules/planning/tasks/deciders/lane_change_decider/lane_change_decider.cc  类LaneChangeDecider中的 Process 方法return Process(frame, reference_line_info);
}

由以上分析可知,LaneChangeDecider 的主要决策逻辑在Process() 方法中,Process() 的代码及注释如下,先上整体代码,再详细讲解其中的每个模块:

// added a dummy parameter to enable this task in ExecuteTaskOnReferenceLine
Status LaneChangeDecider::Process(Frame* frame, ReferenceLineInfo* const current_reference_line_info) {// Sanity checks.CHECK_NOTNULL(frame);/*** modules/planning/conf/planning_config.pb.txt* default_task_config: {task_type: LANE_CHANGE_DECIDERlane_change_decider_config {enable_lane_change_urgency_check: falseenable_prioritize_change_lane: falseenable_remove_change_lane: falsereckless_change_lane: falsechange_lane_success_freeze_time: 1.5change_lane_fail_freeze_time: 1.0}}* **/const auto& lane_change_decider_config = config_.lane_change_decider_config();// 通过frame拿到车辆此时所在的区域参考线个数std::list<ReferenceLineInfo>* reference_line_info = frame->mutable_reference_line_info();// 无参考轨迹,直接返回if (reference_line_info->empty()) {const std::string msg = "Reference lines empty.";AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}//判断是否是强制换道功能,如果是,调用优先换道功能if (lane_change_decider_config.reckless_change_lane()) {// 将换道参考线放到参考线的首位PrioritizeChangeLane(true, reference_line_info);return Status::OK();}/*** modules/planning/proto/planning_status.proto* * message ChangeLaneStatus {*  enum Status {*    IN_CHANGE_LANE = 1;        // during change lane state*    CHANGE_LANE_FAILED = 2;    // change lane failed*    CHANGE_LANE_FINISHED = 3;  // change lane finished*  }*  optional Status status = 1;*  // the id of the route segment that the vehicle is driving on*  optional string path_id = 2;*  // the time stamp when the state started.*  optional double timestamp = 3;*  // the starting position only after which lane-change can happen.*  optional bool exist_lane_change_start_position = 4 [default = false];*  optional apollo.common.Point3D lane_change_start_position = 5;*  // the last time stamp when the lane-change planning succeed.*  optional double last_succeed_timestamp = 6;*  // if the current path and speed planning on the lane-change*  // reference-line succeed.*  optional bool is_current_opt_succeed = 7 [default = false];*  // denotes if the surrounding area is clear for ego vehicle to*  // change lane at this moment.*  optional bool is_clear_to_change_lane = 8 [default = false];* }** **/// 获取换道信息,记录当前时间戳auto* prev_status = injector_->planning_context()->mutable_planning_status()->mutable_change_lane();double now = Clock::NowInSeconds();prev_status->set_is_clear_to_change_lane(false);// /判断传进来的referenceLineinfo是否是变道参考线,如果是则通过if (current_reference_line_info->IsChangeLanePath()) {// IsClearToChangeLane()检查该参考线是否满足变道条件// IsClearToChangeLane 只考虑传入的参考线上的动态障碍物,不考虑虚的和静态的障碍物prev_status->set_is_clear_to_change_lane(IsClearToChangeLane(current_reference_line_info));}// 头次进入task,车道换道状态应该为空,默认设置为换道结束状态if (!prev_status->has_status()) {UpdateStatus(now, ChangeLaneStatus::CHANGE_LANE_FINISHED,GetCurrentPathId(*reference_line_info));prev_status->set_last_succeed_timestamp(now);return Status::OK();}// 判断参考线数量bool has_change_lane = reference_line_info->size() > 1;ADEBUG << "has_change_lane: " << has_change_lane;// 如果只有一条参考线(比如往某个方向只有一条车道),那就通过updatestatus将车辆状态设置为CHANGE_LANE_FINISHED,// 这也符合我们认知,单向只有一条车道,还换什么道,所以车辆就该一直处于换到结束的状态if (!has_change_lane) {// 没有换道参考线(参考线数量小于1条):如果上个周期状态是已经换道完成或者换道失败,则返回进入下个task或者下个周期const auto& path_id = reference_line_info->front().Lanes().Id();if (prev_status->status() == ChangeLaneStatus::CHANGE_LANE_FINISHED) {} // 如果上个周期状态是正在换道,更新换道状态else if (prev_status->status() == ChangeLaneStatus::IN_CHANGE_LANE) {UpdateStatus(now, ChangeLaneStatus::CHANGE_LANE_FINISHED, path_id);} else if (prev_status->status() == ChangeLaneStatus::CHANGE_LANE_FAILED) {} else {const std::string msg = absl::StrCat("Unknown state: ", prev_status->ShortDebugString());AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}return Status::OK();//  下面的else处理不止一条参考线的情况,正常道路都不止一条参考线,//  主要逻辑为状态切换,实际操作还是通过 updatestatus 来实时更新车辆的换道状态。} else {  // has change lane in reference lines.// 得到当前参考线的idauto current_path_id = GetCurrentPathId(*reference_line_info);if (current_path_id.empty()) {const std::string msg = "The vehicle is not on any reference line";AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}// 上一次换道中if (prev_status->status() == ChangeLaneStatus::IN_CHANGE_LANE) {// 换道开始的参考线是否和当前参考线未同一条线if (prev_status->path_id() == current_path_id) {// 如果是,表示没有换道完成PrioritizeChangeLane(true, reference_line_info);} else {// RemoveChangeLane(reference_line_info);PrioritizeChangeLane(false, reference_line_info);ADEBUG << "removed change lane.";// 更新换道状态为CHANGE_LANE_FINISHEDUpdateStatus(now, ChangeLaneStatus::CHANGE_LANE_FINISHED, current_path_id);}return Status::OK();} // 上一次换道失败else if (prev_status->status() == ChangeLaneStatus::CHANGE_LANE_FAILED) {if (now - prev_status->timestamp() < lane_change_decider_config.change_lane_fail_freeze_time()) {// 当前时间减去上次换道的时间间隔小于1s // RemoveChangeLane(reference_line_info);PrioritizeChangeLane(false, reference_line_info);ADEBUG << "freezed after failed";} else {// 当前时间减去上次换道的时间间隔大于1s UpdateStatus(now, ChangeLaneStatus::IN_CHANGE_LANE, current_path_id);ADEBUG << "change lane again after failed";}return Status::OK();} // 上一次换道完成else if (prev_status->status() == ChangeLaneStatus::CHANGE_LANE_FINISHED) {// 当前时间减去上次换道的时间间隔小于1.5s if (now - prev_status->timestamp() < lane_change_decider_config.change_lane_success_freeze_time()) {// RemoveChangeLane(reference_line_info);PrioritizeChangeLane(false, reference_line_info);ADEBUG << "freezed after completed lane change";} else {// 当前时间减去上次换道的时间间隔大于等于1.5s PrioritizeChangeLane(true, reference_line_info);// 更改换道状态为 IN_CHANGE_LANEUpdateStatus(now, ChangeLaneStatus::IN_CHANGE_LANE, current_path_id);ADEBUG << "change lane again after success";}} else {const std::string msg = absl::StrCat("Unknown state: ", prev_status->ShortDebugString());AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}}return Status::OK();
}

3、其中lane_change_decider_config 配置文件很关键,决定了整个函数的流程走向,它定义在以下两个文件中:
modules/planning/conf/planning_config.pb.txt

  lane_change_decider_config {enable_lane_change_urgency_check: falseenable_prioritize_change_lane: falseenable_remove_change_lane: falsereckless_change_lane: falsechange_lane_success_freeze_time: 1.5change_lane_fail_freeze_time: 1.0}

modules/planning/conf/scenario/lane_follow_config.pb.txt

    lane_change_decider_config {enable_lane_change_urgency_check: true}

4、判断是否为可变车道时调用了 IsChangeLanePath(),它的逻辑也很简单, 如果自车在当前ReferenceLine 的车道segment上,则为FALSE;如果自车不在当前ReferenceLine 的车道segment上,则为TRUE。

bool ReferenceLineInfo::IsChangeLanePath() const {// 如果自车在当前ReferenceLine 的车道segment上,则为FALSE// 如果自车不在当前ReferenceLine 的车道segment上,则为TRUE。return !Lanes().IsOnSegment();
}

5、更新变道状态时用到了 UpdateStatus() 函数,它的定义如下:

void LaneChangeDecider::UpdateStatus(ChangeLaneStatus::Status status_code,const std::string& path_id) {UpdateStatus(Clock::NowInSeconds(), status_code, path_id);
}void LaneChangeDecider::UpdateStatus(double timestamp,ChangeLaneStatus::Status status_code,const std::string& path_id) {auto* lane_change_status = injector_->planning_context()->mutable_planning_status()->mutable_change_lane();lane_change_status->set_timestamp(timestamp);lane_change_status->set_path_id(path_id);lane_change_status->set_status(status_code);
}

6、在调整参考线的顺序时,使用了PrioritizeChangeLane() 函数,它的调整参考线顺序的功能,需要配置enable_prioritize_change_lane为True,这个函数的完整代码及注释如下:

void LaneChangeDecider::PrioritizeChangeLane(const bool is_prioritize_change_lane,std::list<ReferenceLineInfo>* reference_line_info) const {if (reference_line_info->empty()) {AERROR << "Reference line info empty";return;}const auto& lane_change_decider_config = config_.lane_change_decider_config();// 如果没有配置变道优先,则退出该函数if (!lane_change_decider_config.enable_prioritize_change_lane()) {return;}auto iter = reference_line_info->begin();while (iter != reference_line_info->end()) {ADEBUG << "iter->IsChangeLanePath(): " << iter->IsChangeLanePath();/* is_prioritize_change_lane == true: prioritize change_lane_reference_lineis_prioritize_change_lane == false: prioritizenon_change_lane_reference_line */// 0、is_prioritize_change_lane 根据参考线数量置位True 或 False// 1、如果 is_prioritize_change_lane 为True// 首先获取第一条参考线的迭代器,然后遍历所有的参考线,如果当前的参考线为允许变道参考线,则将第一条参考线更换为当前迭代器所指向的参考线.// 注意,可变车道为按迭代器的顺序求取,一旦发现可变车道,即推出循环。// 2、如果 is_prioritize_change_lane 为False,// 找到第一条不可变道的参考线,将第一条参考线更新为当前不可变道的参考线if ((is_prioritize_change_lane && iter->IsChangeLanePath()) || (!is_prioritize_change_lane && !iter->IsChangeLanePath())) {ADEBUG << "is_prioritize_change_lane: " << is_prioritize_change_lane;ADEBUG << "iter->IsChangeLanePath(): " << iter->IsChangeLanePath();break;}++iter;}reference_line_info->splice(reference_line_info->begin(),*reference_line_info, iter);ADEBUG << "reference_line_info->IsChangeLanePath(): " << reference_line_info->begin()->IsChangeLanePath();
}

7、 IsClearToChangeLane() 判断当前的参考线是否变道安全,并将结果写入lane_change_status 这个变量中

IsClearToChangeLane() 遍历了当前参考线上所有目标,并根据目标的行驶方向设置安全距离,通过安全距离判断是否变道安全,代码及注释如下:

bool LaneChangeDecider::IsClearToChangeLane(ReferenceLineInfo* reference_line_info) {// 或得当前参考线的s坐标的最大最小值,以及自车速度double ego_start_s = reference_line_info->AdcSlBoundary().start_s();double ego_end_s = reference_line_info->AdcSlBoundary().end_s();double ego_v = std::abs(reference_line_info->vehicle_state().linear_velocity());// 遍历每个目标for (const auto* obstacle : reference_line_info->path_decision()->obstacles().Items()) {// a) 只对动态障碍物进行处理,忽略虚拟障碍物和静态障碍物;     if (obstacle->IsVirtual() || obstacle->IsStatic()) {ADEBUG << "skip one virtual or static obstacle";continue;}double start_s = std::numeric_limits<double>::max();double end_s = -std::numeric_limits<double>::max();double start_l = std::numeric_limits<double>::max();double end_l = -std::numeric_limits<double>::max();// 遍历当前目标的预测轨迹点集,或得预测轨迹的边界点for (const auto& p : obstacle->PerceptionPolygon().points()) {// 对于动态障碍物,先进行投影,获取S和L值SLPoint sl_point;reference_line_info->reference_line().XYToSL(p, &sl_point);start_s = std::fmin(start_s, sl_point.s());end_s = std::fmax(end_s, sl_point.s());start_l = std::fmin(start_l, sl_point.l());end_l = std::fmax(end_l, sl_point.l());}// c) 忽略换道目标参考线上2.5米之外的障碍物;if (reference_line_info->IsChangeLanePath()) {static constexpr double kLateralShift = 2.5;if (end_l < -kLateralShift || start_l > kLateralShift) {continue;}}// Raw estimation on whether same direction with ADC or not based on// prediction trajectory// 根据航向角判断是否为相同方向bool same_direction = true;// d) 对于需要考虑的障碍物进行方向粗略计算,评估是否和自车同向;if (obstacle->HasTrajectory()) {double obstacle_moving_direction = obstacle->Trajectory().trajectory_point(0).path_point().theta();const auto& vehicle_state = reference_line_info->vehicle_state();double vehicle_moving_direction = vehicle_state.heading();if (vehicle_state.gear() == canbus::Chassis::GEAR_REVERSE) {vehicle_moving_direction = common::math::NormalizeAngle(vehicle_moving_direction + M_PI);}double heading_difference = std::abs(common::math::NormalizeAngle(obstacle_moving_direction - vehicle_moving_direction));same_direction = heading_difference < (M_PI / 2.0);}// 设置安全距离static constexpr double kSafeTimeOnSameDirection = 3.0;static constexpr double kSafeTimeOnOppositeDirection = 5.0;static constexpr double kForwardMinSafeDistanceOnSameDirection = 10.0;static constexpr double kBackwardMinSafeDistanceOnSameDirection = 10.0;static constexpr double kForwardMinSafeDistanceOnOppositeDirection = 50.0;static constexpr double kBackwardMinSafeDistanceOnOppositeDirection = 1.0;static constexpr double kDistanceBuffer = 0.5;double kForwardSafeDistance = 0.0;double kBackwardSafeDistance = 0.0;// e) 根据方向,计算纵向上的安全距离,考虑了速度差,比较直观。分为前方和后方两个维度。if (same_direction) {kForwardSafeDistance = std::fmax(kForwardMinSafeDistanceOnSameDirection,(ego_v - obstacle->speed()) * kSafeTimeOnSameDirection);kBackwardSafeDistance = std::fmax(kBackwardMinSafeDistanceOnSameDirection,(obstacle->speed() - ego_v) * kSafeTimeOnSameDirection);} else {kForwardSafeDistance = std::fmax(kForwardMinSafeDistanceOnOppositeDirection,(ego_v + obstacle->speed()) * kSafeTimeOnOppositeDirection);kBackwardSafeDistance = kBackwardMinSafeDistanceOnOppositeDirection;}/*** f) 根据前面计算的阈值,判断障碍物是否安全,采用的是滞回区间的方法,* 如果障碍物小于安全距离,laneChangeBlocking 为true。* 如果障碍物大于安全距离,laneChangeBlocking 为false。* 通过滞回区间进行滤波。一旦发现有block的障碍物,函数就返回,* 就认为该Reference 非clear(安全)。*   static bool HysteresisFilter(const double obstacle_distance,const double safe_distance,const double distance_buffer,const bool is_obstacle_blocking);* * **/// 判断障碍物是否满足安全距离if (HysteresisFilter(ego_start_s - end_s, kBackwardSafeDistance,kDistanceBuffer, obstacle->IsLaneChangeBlocking()) &&HysteresisFilter(start_s - ego_end_s, kForwardSafeDistance,kDistanceBuffer, obstacle->IsLaneChangeBlocking())) {reference_line_info->path_decision()->Find(obstacle->Id())->SetLaneChangeBlocking(true);ADEBUG << "Lane Change is blocked by obstacle" << obstacle->Id();return false;} else {reference_line_info->path_decision()->Find(obstacle->Id())->SetLaneChangeBlocking(false);}}return true;
}bool LaneChangeDecider::HysteresisFilter(const double obstacle_distance,const double safe_distance,const double distance_buffer,const bool is_obstacle_blocking) {if (is_obstacle_blocking) {return obstacle_distance < safe_distance + distance_buffer;} else {return obstacle_distance < safe_distance - distance_buffer;}
}

相关文章:

  • 2312d,D语言单元测试等
  • 超级计算机与天气预报:精准预测的科技革命
  • x3::forward_ast
  • 七大主流的HttpClient程序比较
  • 国内外网络安全现状与存在的问题。应该如何缓解或解决这些问题
  • 51单片机应用从零开始(十一)·数组函数、指针函数
  • 龙芯loongarch64服务器编译安装gcc-8.3.0
  • 虚拟化之问答
  • html css概念
  • 【极客公园 IF 2024】李彦宏:AI-native时代,需要怎样的产品和开发者
  • 【JavaSE】Java入门九(异常详解)
  • 带你手把手解读rejail沙盒源码(0.9.72版本) (七) fnetfilter
  • 将 OpenLDAP 与 IBM Spectrum LSF 集成
  • 工业数据的特殊性和安全防护体系探索思考
  • 数据结构--图
  • 【162天】黑马程序员27天视频学习笔记【Day02-上】
  • 【Leetcode】104. 二叉树的最大深度
  • ES学习笔记(12)--Symbol
  • HTTP 简介
  • JS基础之数据类型、对象、原型、原型链、继承
  • Laravel深入学习6 - 应用体系结构:解耦事件处理器
  • Python爬虫--- 1.3 BS4库的解析器
  • Vue组件定义
  • WinRAR存在严重的安全漏洞影响5亿用户
  • 发布国内首个无服务器容器服务,运维效率从未如此高效
  • 近期前端发展计划
  • ionic入门之数据绑定显示-1
  • 支付宝花15年解决的这个问题,顶得上做出十个支付宝 ...
  • # 学号 2017-2018-20172309 《程序设计与数据结构》实验三报告
  • #微信小程序(布局、渲染层基础知识)
  • (1)(1.19) TeraRanger One/EVO测距仪
  • (10)ATF MMU转换表
  • (39)STM32——FLASH闪存
  • (4)通过调用hadoop的java api实现本地文件上传到hadoop文件系统上
  • (Demo分享)利用原生JavaScript-随机数-实现做一个烟花案例
  • (全部习题答案)研究生英语读写教程基础级教师用书PDF|| 研究生英语读写教程提高级教师用书PDF
  • (十一)c52学习之旅-动态数码管
  • (图)IntelliTrace Tools 跟踪云端程序
  • (转)Android学习系列(31)--App自动化之使用Ant编译项目多渠道打包
  • (转载)深入super,看Python如何解决钻石继承难题
  • .NET core 自定义过滤器 Filter 实现webapi RestFul 统一接口数据返回格式
  • .net安装_还在用第三方安装.NET?Win10自带.NET3.5安装
  • .NET关于 跳过SSL中遇到的问题
  • .net实现客户区延伸至至非客户区
  • .net图片验证码生成、点击刷新及验证输入是否正确
  • @Validated和@Valid校验参数区别
  • [2015][note]基于薄向列液晶层的可调谐THz fishnet超材料快速开关——
  • [2021ICPC济南 L] Strange Series (Bell 数 多项式exp)
  • [AIGC] 使用Curl进行网络请求的常见用法
  • [ai笔记4] 将AI工具场景化,应用于生活和工作
  • [AndroidStudio]_[初级]_[修改虚拟设备镜像文件的存放位置]
  • [ASP.NET MVC]如何定制Numeric属性/字段验证消息
  • [Bzoj4722]由乃(线段树好题)(倍增处理模数小快速幂)
  • [C++提高编程](三):STL初识
  • [CF226E]Noble Knight's Path