当前位置: 首页 > news >正文

第二十六周:学习笔记

第二十六周:学习笔记

  • 摘要
  • Abstract
  • 全卷积网络 FCN
    • 1. CNN 与 FCN
    • 2. 全连接层 --> 成卷积层
    • 3. FCN的缺点

摘要

全卷积神经网络(Fully Convolutional Network,FCN)是一种用于图像分割和语义分割任务的深度学习模型。与传统的卷积神经网络(Convolutional Neural Networks,CNN)不同,FCN中的全卷积层(Fully Convolutional Layer)可以接受任意大小的输入,并输出相应大小的特征图,而不仅仅是对固定大小的输入进行分类。FCN通常由卷积层和转置卷积层组成,以实现特征提取和上采样。通过使用转置卷积层,FCN可以将低分辨率的特征图上采样到原始输入图像的大小,并在每个像素位置产生对应的预测结果。在图像分割任务中,FCN可以将图像中的每个像素分配一个标签,从而实现像素级别的图像分割。它在许多计算机视觉领域中都有广泛应用,如语义分割、实例分割和场景理解等。本文将详细介绍FCN。

Abstract

Fully Convolutional Neural Network (FCN) is a deep learning model for image segmentation and semantic segmentation tasks. Unlike traditional Convolutional Neural Networks (CNNs), the Fully Convolutional Layer in FCN can accept inputs of arbitrary size and output feature maps of the corresponding size, rather than just classifying fixed-size inputs.FCNs usually consist of a convolutional layer and a transpositional convolutional layer for feature extraction and up-conversion. layer and a transposed convolutional layer for feature extraction and upsampling. By using transposed convolutional layers, FCNs can upsample low-resolution feature maps to the size of the original input image and produce corresponding predictions at each pixel location. In image segmentation tasks, FCN can assign a label to each pixel in the image to achieve pixel-level image segmentation. It is widely used in many computer vision fields such as semantic segmentation, instance segmentation and scene understanding. In this paper, we will introduce FCN in detail.

全卷积网络 FCN

1. CNN 与 FCN

通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的向量表示输入图像属于每一类的概率(softmax归一化)。

栗子:下图中的猫, 输入AlexNet, 得到一个长为1000的输出向量, 表示输入图像属于每一类的概率, 其中在“tabby cat”这一类统计概率最高。
在这里插入图片描述
FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。

最后逐个像素计算softmax分类的损失, 相当于每一个像素对应一个训练样本。下图是Longjon用于语义分割所采用的全卷积网络(FCN)的结构示意图:
在这里插入图片描述
简单的来说,FCN与CNN的区域在把于CNN最后的全连接层换成卷积层,输出的是一张已经Label好的图片。
在这里插入图片描述
其实,CNN的强大之处在于它的多层结构能自动学习特征,并且可以学习到多个层次的特征:较浅的卷积层感知域较小,学习到一些局部区域的特征;较深的卷积层具有较大的感知域,能够学习到更加抽象一些的特征。这些抽象特征对物体的大小、位置和方向等敏感性更低,从而有助于识别性能的提高。下图CNN分类网络的示意图:
在这里插入图片描述
这些抽象的特征对分类很有帮助,可以很好地判断出一幅图像中包含什么类别的物体,但是因为丢失了一些物体的细节,不能很好地给出物体的具体轮廓、指出每个像素具体属于哪个物体,因此做到精确的分割就很有难度。

传统的基于CNN的分割方法:为了对一个像素分类,使用该像素周围的一个图像块作为CNN的输入用于训练和预测。这种方法有几个缺点:一是存储开销很大。例如对每个像素使用的图像块的大小为15x15,然后不断滑动窗口,每次滑动的窗口给CNN进行判别分类,因此则所需的存储空间根据滑动窗口的次数和大小急剧上升。二是计算效率低下。相邻的像素块基本上是重复的,针对每个像素块逐个计算卷积,这种计算也有很大程度上的重复。三是像素块大小的限制了感知区域的大小。通常像素块的大小比整幅图像的大小小很多,只能提取一些局部的特征,从而导致分类的性能受到限制。

而全卷积网络(FCN)则是从抽象的特征中恢复出每个像素所属的类别。即从图像级别的分类进一步延伸到像素级别的分类。

2. 全连接层 --> 成卷积层

全连接层和卷积层之间唯一的不同就是卷积层中的神经元只与输入数据中的一个局部区域连接,并且在卷积列中的神经元共享参数。然而在两类层中,神经元都是计算点积,所以它们的函数形式是一样的。因此,将此两者相互转化是可能的:

  • 对于任一个卷积层,都存在一个能实现和它一样的前向传播函数的全连接层。权重矩阵是一个巨大的矩阵,除了某些特定块,其余部分都是零。而在其中大部分块中,元素都是相等的。
  • 相反,任何全连接层都可以被转化为卷积层。比如,一个 K=4096 的全连接层,输入数据体的尺寸是 7∗7∗512,这个全连接层可以被等效地看做一个 F=7,P=0,S=1,K=4096 的卷积层。换句话说,就是将滤波器的尺寸设置为和输入数据体的尺寸一致了。因为只有一个单独的深度列覆盖并滑过输入数据体,所以输出将变成 1∗1∗4096,这个结果就和使用初始的那个全连接层一样了。

全连接层转化为卷积层:在两种变换中,将全连接层转化为卷积层在实际运用中更加有用。假设一个卷积神经网络的输入是 224x224x3 的图像,一系列的卷积层和下采样层将图像数据变为尺寸为 7x7x512 的激活数据体。AlexNet使用了两个尺寸为4096的全连接层,最后一个有1000个神经元的全连接层用于计算分类评分。我们可以将这3个全连接层中的任意一个转化为卷积层:

  • 针对第一个连接区域是[7x7x512]的全连接层,令其滤波器尺寸为F=7,这样输出数据体就为[1x1x4096]了。
  • 针对第二个全连接层,令其滤波器尺寸为F=1,这样输出数据体为[1x1x4096]。
  • 对最后一个全连接层也做类似的,令其F=1,最终输出为[1x1x1000]
    实际操作中,每次这样的变换都需要把全连接层的权重W重塑成卷积层的滤波器。那么这样的转化有什么作用呢?它在下面的情况下可以更高效:让卷积网络在一张更大的输入图片上滑动,得到多个输出,这样的转化可以让我们在单个向前传播的过程中完成上述的操作。

举个例子:如果我们想让224×224尺寸的浮窗,以步长为32在384×384的图片上滑动,把每个经停的位置都带入卷积网络,最后得到6×6个位置的类别得分。上述的把全连接层转换成卷积层的做法会更简便。如果224×224的输入图片经过卷积层和下采样层之后得到了[7x7x512]的数组,那么,384×384的大图片直接经过同样的卷积层和下采样层之后会得到[12x12x512]的数组。然后再经过上面由3个全连接层转化得到的3个卷积层,最终得到[6x6x1000]的输出((12 – 7)/1 + 1 = 6)。这个结果正是浮窗在原图经停的6×6个位置的得分!

如下图所示,FCN将传统CNN中的全连接层转化成卷积层,对应CNN网络FCN把最后三层全连接层转换成为三层卷积层。在传统的CNN结构中,前5层是卷积层,第6层和第7层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个不同类别的概率。FCN将这3层表示为卷积层,卷积核的大小 (通道数,宽,高) 分别为 (4096,1,1)、(4096,1,1)、(1000,1,1)。看上去数字上并没有什么差别,但是卷积跟全连接是不一样的概念和计算过程,使用的是之前CNN已经训练好的权值和偏置,但是不一样的在于权值和偏置是有自己的范围,属于自己的一个卷积核。因此FCN网络中所有的层都是卷积层,故称为全卷积网络。
在这里插入图片描述
下图是一个全卷积层,与上图不一样的是图像对应的大小下标,CNN中输入的图像大小是同意固定resize成 227x227 大小的图像,第一层pooling后为55x55,第二层pooling后图像大小为27x27,第五层pooling后的图像大小为1313。而FCN输入的图像是HW大小,第一层pooling后变为原图大小的1/4,第二层变为原图大小的1/8,第五层变为原图大小的1/16,第八层变为原图大小的1/32(勘误:其实真正代码当中第一层是1/2,以此类推)。
在这里插入图片描述
经过多次卷积和pooling以后,得到的图像越来越小,分辨率越来越低。其中图像到 H/32∗W/32 的时候图片是最小的一层时,所产生图叫做heatmap热图,热图就是我们最重要的高维特诊图,得到高维特征的heatmap之后就是最重要的一步也是最后的一步对原图像进行upsampling,把图像进行放大、放大、放大,到原图像的大小。
在这里插入图片描述
最后的输出是1000张heatmap经过upsampling变为原图大小的图片,为了对每个像素进行分类预测label成最后已经进行语义分割的图像,这里有一个小trick,就是最后通过逐个像素地求其在1000张图像该像素位置的最大数值描述(概率)作为该像素的分类。因此产生了一张已经分类好的图片,如下图右侧有狗狗和猫猫的图。
在这里插入图片描述
相较于使用被转化前的原始卷积神经网络对所有36个位置进行迭代计算,使用转化后的卷积神经网络进行一次前向传播计算要高效得多,因为36次计算都在共享计算资源。这一技巧在实践中经常使用,一次来获得更好的结果。比如,通常将一张图像尺寸变得更大,然后使用变换后的卷积神经网络来对空间上很多不同位置进行评价得到分类评分,然后在求这些分值的平均值。

最后,如果我们想用步长小于32的浮窗怎么办?用多次的向前传播就可以解决。比如我们想用步长为16的浮窗。那么先使用原图在转化后的卷积网络执行向前传播,然后分别沿宽度,沿高度,最后同时沿宽度和高度,把原始图片分别平移16个像素,然后把这些平移之后的图分别带入卷积网络。

如下图所示,当图片在网络中经过处理后变成越小的图片,其特征也越明显,就像图像中颜色所示,当然啦,最后一层的图片不再是一个1个像素的图片,而是原图像 H/32xW/32 大小的图,这里为了简化而画成一个像素而已。
在这里插入图片描述
如下图所示,对原图像进行卷积conv1、pool1后原图像缩小为1/2;之后对图像进行第二次conv2、pool2后图像缩小为1/4;接着继续对图像进行第三次卷积操作conv3、pool3缩小为原图像的1/8,此时保留pool3的featureMap;接着继续对图像进行第四次卷积操作conv4、pool4,缩小为原图像的1/16,保留pool4的featureMap;最后对图像进行第五次卷积操作conv5、pool5,缩小为原图像的1/32,然后把原来CNN操作中的全连接变成卷积操作conv6、conv7,图像的featureMap数量改变但是图像大小依然为原图的1/32,此时图像不再叫featureMap而是叫heatMap。

现在我们有1/32尺寸的heatMap,1/16尺寸的featureMap和1/8尺寸的featureMap,1/32尺寸的heatMap进行upsampling操作之后,因为这样的操作还原的图片仅仅是conv5中的卷积核中的特征,限于精度问题不能够很好地还原图像当中的特征,因此在这里向前迭代。把conv4中的卷积核对上一次upsampling之后的图进行反卷积补充细节(相当于一个差值过程),最后把conv3中的卷积核对刚才upsampling之后的图像进行再次反卷积补充细节,最后就完成了整个图像的还原。

在这里插入图片描述

3. FCN的缺点

在这里我们要注意的是FCN的缺点:

  • 是得到的结果还是不够精细。进行8倍上采样虽然比32倍的效果好了很多,但是上采样的结果还是比较模糊和平滑,对图像中的细节不敏感。
  • 是对各个像素进行分类,没有充分考虑像素与像素之间的关系。忽略了在通常的基于像素分类的分割方法中使用的空间规整(spatial regularization)步骤,缺乏空间一致性。

相关文章:

  • Linux 安装 mysql【使用yum源进行安装】
  • Android 万能的RecyclerView适配器(BaseRecyclerViewAdapterHelper)
  • BloombergGPT—金融领域大模型
  • oracle-存储结构
  • 扫雷(c语言)
  • JAVA-ArrayList的相关坑
  • SQL高级:存储过程和触发器
  • MR实战:统计总分与平均分
  • 分库分表之Mycat应用学习二
  • 【网络面试(2)】DNS原理-域名和IP地址的查询转换
  • C#学习笔记 - C#基础知识 - C#从入门到放弃 - C# Windows窗体技术及基础控件(一)
  • 08-接口文档管理工具-项目集成knife4j__ev
  • 【模拟电路】基础理论与实际应用
  • 八股文打卡day17——计算机网络(17)
  • 机器学习:贝叶斯估计在新闻分类任务中的应用
  • IE9 : DOM Exception: INVALID_CHARACTER_ERR (5)
  • (ckeditor+ckfinder用法)Jquery,js获取ckeditor值
  • 10个确保微服务与容器安全的最佳实践
  • ABAP的include关键字,Java的import, C的include和C4C ABSL 的import比较
  • CoolViewPager:即刻刷新,自定义边缘效果颜色,双向自动循环,内置垂直切换效果,想要的都在这里...
  • Django 博客开发教程 16 - 统计文章阅读量
  • docker容器内的网络抓包
  • iOS编译提示和导航提示
  • Java程序员幽默爆笑锦集
  • java概述
  • python大佬养成计划----difflib模块
  • Vue.js 移动端适配之 vw 解决方案
  • vue2.0项目引入element-ui
  • vue-router的history模式发布配置
  • 包装类对象
  • 让你的分享飞起来——极光推出社会化分享组件
  • 如何借助 NoSQL 提高 JPA 应用性能
  • 入门到放弃node系列之Hello Word篇
  • Spring第一个helloWorld
  • ​LeetCode解法汇总518. 零钱兑换 II
  • ​linux启动进程的方式
  • ​油烟净化器电源安全,保障健康餐饮生活
  • #1015 : KMP算法
  • #Linux(make工具和makefile文件以及makefile语法)
  • #我与Java虚拟机的故事#连载02:“小蓝”陪伴的日日夜夜
  • (学习日记)2024.04.10:UCOSIII第三十八节:事件实验
  • (一)使用IDEA创建Maven项目和Maven使用入门(配图详解)
  • (一)使用Mybatis实现在student数据库中插入一个学生信息
  • (原創) 物件導向與老子思想 (OO)
  • (转)shell调试方法
  • .net 8 发布了,试下微软最近强推的MAUI
  • .NET gRPC 和RESTful简单对比
  • .NET单元测试
  • @PreAuthorize注解
  • [2]十道算法题【Java实现】
  • [BUUCTF NewStarCTF 2023 公开赛道] week3 crypto/pwn
  • [C#基础知识]专题十三:全面解析对象集合初始化器、匿名类型和隐式类型
  • [C++]C++入门--引用
  • [C++]unordered系列关联式容器
  • [CLickhouse] 学习小计