当前位置: 首页 > news >正文

Java中常见的锁策略

目录

 乐观锁 vs 悲观锁

悲观锁:

乐观锁:

重量级锁 vs 轻量级锁  

⾃旋锁(Spin Lock)

公平锁 vs 非公平锁  

可重⼊锁 vs 不可重入锁  

读写锁 

 


乐观锁 vs 悲观锁

悲观锁:
总是假设最坏的情况,每次去拿数据的时候都认为别⼈会修改,所以每次在拿数据的时候都会上锁,这样别⼈想拿这个数据就会阻塞直到它拿到锁。
乐观锁:
假设数据⼀般情况下不会产⽣并发冲突,所以在数据进⾏提交更新的时候,才会正式对数据是否产⽣并发冲突进⾏检测,如果发现并发冲突了,则让返回⽤⼾错误的信息,让⽤⼾决定如何去做。

举个栗⼦: 同学 A 和 同学 B 想请教⽼师⼀个问题.
同学 A 认为 "⽼师是⽐较忙的, 我来问问题, ⽼师不⼀定有空解答". 因此同学 A 会先给⽼师发消息: "⽼师你忙嘛? 我下午两点能来找你问个问题嘛?" (相当于加锁操作) 得到肯定的答复之后, 才会真的来问问题. 如果得到了否定的答复, 那就等⼀段时间, 下次再来和⽼师确定时间. 这个是悲观锁.

 同学 B 认为 "⽼师是⽐较闲的, 我来问问题, ⽼师⼤概率是有空解答的". 因此同学 B 直接就来找⽼师.(没加锁, 直接访问资源) 如果⽼师确实⽐较闲, 那么直接问题就解决了. 如果⽼师这会确实很忙, 那么同学 B也不会打扰⽼师, 就下次再来(虽然没加锁, 但是能识别出数据访问冲突). 这个是乐观锁.

这两种思路不能说谁优谁劣, ⽽是看当前的场景是否合适.
如果当前⽼师确实⽐较忙, 那么使⽤悲观锁的策略更合适, 使⽤乐观锁会导致 "⽩跑很多趟", 耗费额外的资源.
如果当前⽼师确实⽐较闲, 那么使⽤乐观锁的策略更合适, 使⽤悲观锁会让效率⽐较低.

 Synchronized 初始使用乐观锁策略. 当发现锁竞争比较频繁的时候, 就会自动切换成悲观锁策略.

就好⽐同学 C 开始认为 "⽼师⽐较闲的", 问问题都会直接去找⽼师.
但是直接来找两次⽼师之后, 发现⽼师都挺忙的, 于是下次再来问问题, 就先发个消息问问⽼师忙不忙, 再决定是否来问问题

重量级锁 vs 轻量级锁  

锁的核⼼特性 "原⼦性", 这样的机制追根溯源是 CPU 这样的硬件设备提供的.
  • CPU 提供了 "原⼦操作指令".
  • 操作系统基于 CPU 的原⼦指令, 实现了 mutex 互斥锁.
  • JVM 基于操作系统提供的互斥锁, 实现了 synchronized ReentrantLock 等关键字和类.

 注意, synchronized 并不仅仅是对 mutex 进⾏封装, 在 synchronized 内部还做了很多其

他的⼯作
重量级锁: 加锁机制重度依赖了 OS 提供了 mutex
  • ⼤量的内核态⽤⼾态切换
  • 很容易引发线程的调度

这两个操作, 成本⽐较⾼. ⼀旦涉及到⽤⼾态和内核态的切换, 就意味着 "沧海桑⽥" 

 轻量级锁: 加锁机制尽可能不使⽤ mutex, ⽽是尽量在⽤⼾态代码完成. 实在搞不定了, 再使⽤ mutex.

  • 少量的内核态⽤⼾态切换.
  • 不太容易引发线程调度.
理解⽤⼾态 vs 内核态
想象去银⾏办业务.
在窗⼝外, ⾃⼰做, 这是⽤⼾态. ⽤⼾态的时间成本是⽐较可控的.
在窗⼝内, ⼯作⼈员做, 这是内核态. 内核态的时间成本是不太可控的.
如果办业务的时候反复和⼯作⼈员沟通, 还需要重新排队, 这时效率是很低的.

 synchronized 开始是⼀个轻量级锁. 如果锁冲突⽐较严重, 就会变成重量级锁

自旋锁(Spin Lock)

按之前的⽅式,线程在抢锁失败后进⼊阻塞状态,放弃 CPU,需要过很久才能再次被调度.
但实际上, ⼤部分情况下,虽然当前抢锁失败,但过不了很久,锁就会被释放。没必要就放弃 CPU. 这个时候就可以使⽤⾃旋锁来处理这样的问题.
如果获取锁失败, ⽴即再尝试获取锁, ⽆限循环, 直到获取到锁为⽌. 第⼀次获取锁失败, 第⼆次的尝试会在极短的时间内到来. ⼀旦锁被其他线程释放, 就能第⼀时间获取到锁
理解⾃旋锁 vs 挂起等待锁
想象⼀下, 去追求⼀个⼥神. 当男⽣向⼥神表⽩后, ⼥神说: 你是个好⼈, 但是我有男朋友了~~
挂起等待锁: 陷⼊沉沦不能⾃拔.... 过了很久很久之后, 突然⼥神发来消息, "咱俩要不试试?" (注意, 这个很⻓的时间间隔⾥, ⼥神可能已经换了好⼏个男票了).
⾃旋锁: 死⽪赖脸坚韧不拔. 仍然每天持续的和⼥神说早安晚安. ⼀旦⼥神和上⼀任分⼿, 那么就能⽴刻抓住机会上位.
⾃旋锁是⼀种典型的 轻量级锁 的实现⽅式.
  • 优点: 没有放弃 CPU, 不涉及线程阻塞和调度, ⼀旦锁被释放, 就能第⼀时间获取到锁.
  • 缺点: 如果锁被其他线程持有的时间⽐较久, 那么就会持续的消耗 CPU 资源. (⽽挂起等待的时候是不消耗 CPU 的)

synchronized 中的轻量级锁策略⼤概率就是通过⾃旋锁的⽅式实现的.  

公平锁 vs 非公平锁  

假设三个线程 A, B, C. A 先尝试获取锁, 获取成功. 然后 B 再尝试获取锁, 获取失败, 阻塞等待; 然后 C 也尝试获取锁, C 也获取失败, 也阻塞等待.
当线程 A 释放锁的时候, 会发⽣啥呢?
公平锁: 遵守 "先来后到". B ⽐ C 先来的. 当 A 释放锁的之后, B 就能先于 C 获取到锁.
⾮公平锁: 不遵守 "先来后到". B 和 C 都有可能获取到锁
这就好⽐⼀群男⽣追同⼀个⼥神. 当⼥神和前任分⼿之后, 先来追⼥神的男⽣上位, 这就是公平锁; 如果
是⼥神不按先后顺序挑⼀个⾃⼰看的顺眼的, 就是⾮公平锁.
注意:
  • 操作系统内部的线程调度就可以视为是随机的. 如果不做任何额外的限制, 锁就是⾮公平锁. 如果要想实现公平锁, 就需要依赖额外的数据结构, 来记录线程们的先后顺序.
  • 公平锁和⾮公平锁没有好坏之分, 关键还是看适⽤场景.

 synchronized 是⾮公平锁.

可重入锁 vs 不可重入锁  

可重⼊锁的字⾯意思是“可以重新进⼊的锁”,即允许同⼀个线程多次获取同⼀把锁。
⽐如⼀个递归函数⾥有加锁操作,递归过程中这个锁会阻塞⾃⼰吗?如果不会,那么这个锁就是可重⼊锁(因为这个原因可重⼊锁也叫做递归锁)。
Java⾥只要以Reentrant开头命名的锁都是可重⼊锁,⽽且JDK提供的所有现成的Lock实现类,包括 synchronized关键字锁都是可重⼊的
⽽ Linux 系统提供的 mutex 是不可重⼊锁.
理解 "把⾃⼰锁死"
⼀个线程没有释放锁, 然后⼜尝试再次加锁.
// 第⼀次加锁, 加锁成功lock();// 第⼆次加锁, 锁已经被占⽤, 阻塞等待. lock();
按照之前对于锁的设定, 第⼆次加锁的时候, 就会阻塞等待. 直到第⼀次的锁被释放, 才能获取到第⼆个锁. 但是释放第⼀个锁也是由该线程来完成, 结果这个线程已经躺平了, 啥都不想⼲了, 也就⽆法进⾏解锁操作. 这时候就会 死锁.

 

 这样的锁称为 不可重⼊锁.

 synchronized 是可重入锁

读写锁 

多线程之间,数据的读取⽅之间不会产⽣线程安全问题,但数据的写⼊⽅互相之间以及和读者之间都 需要进⾏互斥。如果两种场景下都⽤同⼀个锁,就会产⽣极⼤的性能损耗。所以读写锁因此而产⽣。
读写锁(readers-writer lock),看英⽂可以顾名思义,在执⾏加锁操作时需要额外表明读写意图,复数读者之间并不互斥,⽽写者则要求与任何⼈互斥。
⼀个线程对于数据的访问, 主要存在两种操作: 读数据 和 写数据.
  • 两个线程都只是读⼀个数据, 此时并没有线程安全问题. 直接并发的读取即可.
  • 两个线程都要写⼀个数据, 有线程安全问题.
  • ⼀个线程读另外⼀个线程写, 也有线程安全问题.
读写锁就是把读操作和写操作区分对待. Java 标准库提供了 ReentrantReadWriteLock 类, 实现
了读写锁
  • ReentrantReadWriteLock.ReadLock 类表⽰⼀个读锁. 这个对象提供了 lock / unlock ⽅法 进⾏加锁解锁.
  • ReentrantReadWriteLock.WriteLock 类表⽰⼀个写锁. 这个对象也提供了 lock / unlock ⽅法进⾏加锁解锁
其中,
  • 读加锁和读加锁之间, 不互斥.
  • 写加锁和写加锁之间, 互斥.
  • 读加锁和写加锁之间, 互斥.
注意, 只要是涉及到 "互斥", 就会产⽣线程的挂起等待. ⼀旦线程挂起, 再次被唤醒就不知道隔了多久了.
因此尽可能减少 "互斥" 的机会, 就是提⾼效率的重要途径

 读写锁特别适合于 "频繁读, 不频繁写" 的场景中. (这样的场景其实也是⾮常⼴泛存在的).

 Synchronized 不是读写锁.

相关文章:

  • 【Linux】详解文件系统以及周边知识
  • 10.windows ubuntu 组装软件:spades,megahit
  • 鸿蒙应用开发-录音保存并播放音频
  • Linux文件(系统)IO(含动静态库的链接操作)
  • 最新2024年增强现实(AR)营销指南(完整版)
  • 全国青少年软件编程(Python)等级考试一级考试真题2023年9月——持续更新.....
  • HTML块级元素和内联元素(头部和布局)
  • centos 7 安装磐维(PanWeiDB)数据库(单机)
  • pandas在循环中多次写入数据到一个excel防止锁定的方法
  • 鸿蒙ARKTS--简易的购物网站
  • 【pytest、playwright】多账号同时操作
  • 基于spark的大数据分析预测地震受灾情况的系统设计
  • 【洛谷】P9241 [蓝桥杯 2023 省 B] 飞机降落
  • OpemMP 同步结构
  • React Hooks的出现解决了什么问题?
  • canvas 绘制双线技巧
  • CSS3 聊天气泡框以及 inherit、currentColor 关键字
  • ES2017异步函数现已正式可用
  • go append函数以及写入
  • JWT究竟是什么呢?
  • Netty+SpringBoot+FastDFS+Html5实现聊天App(六)
  • Python十分钟制作属于你自己的个性logo
  • Redash本地开发环境搭建
  • supervisor 永不挂掉的进程 安装以及使用
  • unity如何实现一个固定宽度的orthagraphic相机
  • Unix命令
  • Work@Alibaba 阿里巴巴的企业应用构建之路
  • 从零搭建Koa2 Server
  • 短视频宝贝=慢?阿里巴巴工程师这样秒开短视频
  • 想晋级高级工程师只知道表面是不够的!Git内部原理介绍
  • Play Store发现SimBad恶意软件,1.5亿Android用户成受害者 ...
  • 带你开发类似Pokemon Go的AR游戏
  • # Swust 12th acm 邀请赛# [ K ] 三角形判定 [题解]
  • ###STL(标准模板库)
  • #鸿蒙生态创新中心#揭幕仪式在深圳湾科技生态园举行
  • #我与Java虚拟机的故事#连载09:面试大厂逃不过的JVM
  • #我与Java虚拟机的故事#连载19:等我技术变强了,我会去看你的 ​
  • ( 10 )MySQL中的外键
  • (13)[Xamarin.Android] 不同分辨率下的图片使用概论
  • (PHP)设置修改 Apache 文件根目录 (Document Root)(转帖)
  • (PWM呼吸灯)合泰开发板HT66F2390-----点灯大师
  • (二开)Flink 修改源码拓展 SQL 语法
  • (力扣记录)235. 二叉搜索树的最近公共祖先
  • (十七)Flask之大型项目目录结构示例【二扣蓝图】
  • (一一四)第九章编程练习
  • (转)Oracle 9i 数据库设计指引全集(1)
  • (转)scrum常见工具列表
  • **PHP二维数组遍历时同时赋值
  • *ST京蓝入股力合节能 着力绿色智慧城市服务
  • .bat批处理(七):PC端从手机内复制文件到本地
  • .NET CF命令行调试器MDbg入门(二) 设备模拟器
  • .Net Core缓存组件(MemoryCache)源码解析
  • .net oracle 连接超时_Mysql连接数据库异常汇总【必收藏】
  • .net 发送邮件
  • .NET/C# 在代码中测量代码执行耗时的建议(比较系统性能计数器和系统时间)