当前位置: 首页 > news >正文

【C++】详解AVL树——平衡二叉搜索树

个人主页:东洛的克莱斯韦克-CSDN博客

祝福语:愿你拥抱自由的风

目录

二叉搜索树

AVL树概述

平衡因子

旋转情况分类

左单旋

右单旋

左右双旋

右左双旋

AVL树节点设计

AVL树设计

详解单旋

左单旋

右单旋

详解双旋

左右双旋

平衡因子情况如下

右左双旋

平衡因子情况如下


二叉搜索树

【C++】详解二叉搜索树-CSDN博客

AVL树概述

平衡树:左子树的高度等于右子树的高度

不平衡树:左子树的高度不等于等于右子树的高度

二叉搜索树很难是一颗平衡树。

对二叉树进行插入和删除的操作,或插入大量的数据不够随机,都会是使二叉搜索树不够平衡。

极端情况下,二叉树会退化成类似链表的结构,那么二叉搜索树查询数据的效率荡然无存。

在二叉树的基础上加入平衡的概念就是平衡二叉搜索树,也叫AVL树

AVL树也不是一颗绝对的平衡树,AVL树的平衡是相对的,它允许左子树和右子树的高度为 1 ,但不能超过 1

平衡是相对的很好理解,因为一个父亲节点最多只能有两个孩子节点,而数据又是一个一个插入的,所以一定会出现左子树和右子树高度差为 1 的情况。

B树可达到绝对平衡,因为B树是多叉结构——一个父亲节点有多个孩子节点

如果左子树和右子树的高度差为 2 就视为打破平衡

如果打破平衡,就需要通过旋转这一操作让左右子树的高度差小于等于 1 。

AVL树是保持一种相对平衡的状态,而不是绝对平衡。那么AVL树搜索数据的效率只能是接近O(logN)

AVL树只是保证了搜索效率的下限,而不是提高了上限

平衡因子

平衡因子这一概念并不是AVL树所必备的——从代码实现的角度来说,如果不加入平衡因子的概念理解起来会比较抽象。

平衡因子:让每个节点存一个整型,该整形值的大小等于右子树的高度减左子树的高度

平衡因子等于 0 左右子树平衡

平衡因子等于 1左右子树相对平衡,右树偏高

平衡因子等于 -1 :左右子树相对平衡,左树树偏高

平衡因子等于 2 -2左右子树不平衡

平衡因子的更新:

插入父亲节点的右边平衡因子加加,插入父亲节点的右边平衡因子减减

父亲节点更新后的平衡因子等于 1 或 -1 ,需要不断往上(溯源)更新,直到父亲节点的平衡因子为 0 或 更新至整棵树的根节点就停止更新

如果父亲节点的平衡因子为 2 或 -2 时,需要对这棵子树旋转,旋转后更新平衡因子

示例

旋转情况分类

旋转分为:

左单旋 右单旋  左右双旋  右左双旋

左单旋

:新节点插入较高右子树的右侧

具象图:

抽象图:

那么左单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的左孩子成为fathernode的右孩子,

再让fathernode成为cur的左孩子。

如下示意图

右单旋

:新节点插入较高左子树的左侧

具象图:

抽象图:

那么右单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的右孩子成为fathernode的左孩子,

再让fathernode成为cur的右孩子

如下示意图:

左右双旋

:新节点插入在较高左子树的右侧——先左单旋再右单旋

左右双旋的核心步骤为:

设父亲节点为:fathernode 

父亲的左孩子节点为:fathernodeL

父亲的左孩子节点的右孩子节点的为fathernodeLR

先让fathernodeL左单旋,再让fathernodeLR进行右单旋

这里小编直接上抽象图:

右左双旋

:新节点插入再较高右子树的左侧——先右单旋再左单旋

设父亲节点为:fathernode 

父亲的 右孩子节点为:fathernodeR

父亲的右孩子节点的左孩子节点的为fathernodeRL

先对fathernodeR进行右单旋,再对fathernode进行左单旋。

示意图:

AVL树节点设计

【C++】详解C++的模板-CSDN博客

AVL树的节点需要三个指针,分别指向左孩子节点,右孩子节点,父亲节点。指向父亲节点的指针是为了能溯源更新平衡因子。

需要一个整型存储平衡因子,平衡因子在构造函数的初始化列表中初始化为 0,因为新节点左右孩子都为空。

template <class K>
class AVLTreeNode
{
public:AVLTreeNode(const K& key) //构造函数:_key(key), _left(nullptr), _right(nullptr), _FatherNode(nullptr), _bf(0){}K _key; //键值   AVLTreeNode<K>* _left;//左孩子AVLTreeNode<K>* _right;//右孩子AVLTreeNode<K>* _FatherNode;//父亲  int _bf;//平衡因子};

AVL树设计

template <class K>
class AVLTree
{typedef AVLTreeNode<K> node; node* _root;public:AVLTree()  //构造函数,初始化为空树:_root(nullptr){}bool Insert(const K& key)//插入元素{
//if (nullptr == _root) //是否是空树{_root = new node(key);  return true;}
//node* cur = _root;node* fathernode = nullptr;while (cur)  //查找插入的位置,如果树中已经有要插入的值,则插入失败,{if (cur->_key < key){fathernode = cur;cur = cur->_right;}else if (cur->_key > key){fathernode = cur;cur = cur->_left;}else{return false;}}cur = new node(key); //新插入节点 if (fathernode->_key < cur->_key) //判断新节点应该是左孩子还是右孩子{fathernode->_right = cur;cur->_FatherNode = fathernode;}else{fathernode->_left = cur;cur->_FatherNode = fathernode;}//while (fathernode)//更新平衡因子{if (cur == fathernode->_left){fathernode->_bf--;}else  if (cur == fathernode->_right){fathernode->_bf++;}//if (fathernode->_bf == 0){// 更新结束break;}else if (fathernode->_bf == 1 || fathernode->_bf == -1){// 继续往上更新cur = fathernode;fathernode = fathernode->_FatherNode;}else if (fathernode->_bf == 2 || fathernode->_bf == -2){// 子树不平衡了,需要旋转if (fathernode->_bf == 2 && cur->_bf == 1){RevolveLeft(fathernode);//左单旋}else if (fathernode->_bf == -2 && cur->_bf == -1){RevolveRight(fathernode);//右单旋}else if (fathernode->_bf == 2 && cur->_bf == -1){RevolveRightLeft(fathernode); //右左双旋   }else if (fathernode->_bf == -2 && cur->_bf == 1){RevolveLeftRight(fathernode);//左右双旋}else{assert(false);   //平衡因子出问题了}break;}}return true;}}

下面通过代码的细节来深入理解旋转

详解单旋

左单旋

完整代码如下

void RevolveLeft(node *& fathernode)//左单旋      
{node* cur = fathernode->_right; //父亲节点的右孩子fathernode->_right = cur->_left; //更改指向关系if (cur->_left != nullptr) //特殊情况cur->_left->_FatherNode = fathernode;//更改指向关系cur->_FatherNode = fathernode->_FatherNode;//更改指向关系if (fathernode->_FatherNode != nullptr) //为空是特殊情况,{if (fathernode->_FatherNode->_right == fathernode){fathernode->_FatherNode->_right = cur;//更改指向关系}else{fathernode->_FatherNode->_left = cur;//更改指向关系}}cur->_left = fathernode;//更改指向关系fathernode->_FatherNode = cur;//更改指向关系fathernode->_bf = 0; //更新平衡因子cur->_bf = 0;}

处理指向关系时,一定不要忘了更改父亲的指向关系

经过左单旋之后,父亲节点和右孩子节点的平衡因子都为 0 ,可参考上文图示。

特殊情况如下,如果不处理特殊情况,程序很容易崩溃

右单旋

void RevolveRight(node *& fathernode) //右单旋
{node* cur = fathernode->_left; //父亲节点的左节点fathernode->_left = cur->_right;//更新指向关系if (cur->_right != nullptr) //特殊情况cur->_right->_FatherNode = fathernode;//更新指向关系cur->_FatherNode = fathernode->_FatherNode;//更新指向关系if (fathernode->_FatherNode != nullptr)//特殊情况{if (fathernode->_FatherNode->_right == fathernode){fathernode->_FatherNode->_right = cur;//更新指向关系}else{fathernode->_FatherNode->_left = cur;//更新指向关系}}cur->_right = fathernode;//更新指向关系fathernode->_FatherNode = cur;//更新指向关系fathernode->_bf = 0;//更新平衡因子cur->_bf = 0;
}

详解双旋

左右双旋

左右双旋只需复用左单旋和右单旋即可,但平衡因子的更新却比较麻烦

完整代码如下

	void RevolveLeftRight(node *& fathernode)//左右双旋    {node* fathernodeL = fathernode->_left; //父亲节点的左孩子节点node* fathernodeLR = fathernodeL->_right;//父亲节点的左孩子节点的右孩子节点int bf = fathernodeLR->_bf; //保存平衡因子,实际是为了判断是插入了fathernodeLR左边还是右边还是fathernodeLR本身插入RevolveLeft(fathernodeL);RevolveRight(fathernode);//更新平衡因子if (bf == 0){fathernode->_bf = 0;fathernodeL->_bf = 0;fathernodeLR->_bf = 0;}else if (bf == -1){fathernode->_bf = 1;fathernodeL->_bf = 0;fathernodeLR->_bf = 0;}else if (bf == 1){fathernodeL->_bf = -1;fathernode = 0;fathernodeLR = 0;}else{assert(false);}}

平衡因子情况如下

右左双旋

完整代码如下

	void RevolveRightLeft(node *& fathernode) //右左双旋 {node* fathernodeR = fathernode->_right; node* fathernodeRL = fathernodeR->_left;int bf = fathernodeRL->_bf;RevolveRight(fathernodeR);RevolveLeft(fathernode);if (bf == 0){fathernode->_bf = 0;fathernodeR->_bf = 0;fathernodeRL->_bf = 0;}else if (bf == 1){fathernode->_bf = -1;fathernodeR->_bf = 0;fathernodeRL->_bf = 0;}else if (bf == -1){fathernodeR->_bf = 1;fathernode->_bf = 0;fathernodeRL->_bf = 0;}else{assert(false); }}

平衡因子情况如下

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 电商公司需不需要建数字档案室呢
  • 下一代Docker会让部署更丝滑吗
  • 说些什么好呢
  • 鸿蒙系统和安卓系统通过termux搭建Linux系统—Centos
  • 常见算法(3)
  • AI爆文写作:或许开放性的标题,才会更让人想点开了解答案
  • easy-es EsAutoConfiguration RestHighLevelClient 没有自动注入配置
  • 算法训练营第三十九天 | LeetCode 738 单调递增的数字、LeetCode 968 监控二叉树
  • 非整数倍数据位宽转换24to128
  • Meta发布Chameleon模型预览,挑战多模态AI前沿
  • Softing工业推出新品edgeGate:一款用于工业边缘和云应用的硬件网关
  • 使用VirtualBox+vagrant创建CentOS7虚拟机
  • 简易进程池的实现
  • MySQL 8.4.0 LTS 变更解析:I_S 表、权限、关键字和客户端
  • 家政服务,让您的家更温馨
  • python3.6+scrapy+mysql 爬虫实战
  • 【JavaScript】通过闭包创建具有私有属性的实例对象
  • 【node学习】协程
  • Android Studio:GIT提交项目到远程仓库
  • C++类的相互关联
  • CentOS从零开始部署Nodejs项目
  • ES6系列(二)变量的解构赋值
  • iOS 颜色设置看我就够了
  • js
  • LintCode 31. partitionArray 数组划分
  • Spring声明式事务管理之一:五大属性分析
  • underscore源码剖析之整体架构
  • Vue全家桶实现一个Web App
  • 发布国内首个无服务器容器服务,运维效率从未如此高效
  • 海量大数据大屏分析展示一步到位:DataWorks数据服务+MaxCompute Lightning对接DataV最佳实践...
  • 前端性能优化——回流与重绘
  • 温故知新之javascript面向对象
  • 在Docker Swarm上部署Apache Storm:第1部分
  • 智能合约开发环境搭建及Hello World合约
  • C# - 为值类型重定义相等性
  • SAP CRM里Lead通过工作流自动创建Opportunity的原理讲解 ...
  • 微龛半导体获数千万Pre-A轮融资,投资方为国中创投 ...
  • ​520就是要宠粉,你的心头书我买单
  • ​学习一下,什么是预包装食品?​
  • #经典论文 异质山坡的物理模型 2 有效导水率
  • (php伪随机数生成)[GWCTF 2019]枯燥的抽奖
  • (八)c52学习之旅-中断实验
  • (笔试题)分解质因式
  • (第27天)Oracle 数据泵转换分区表
  • (二)Eureka服务搭建,服务注册,服务发现
  • (十七)Flink 容错机制
  • (十三)Flask之特殊装饰器详解
  • (算法)N皇后问题
  • (贪心) LeetCode 45. 跳跃游戏 II
  • (转)linux 命令大全
  • (转)Windows2003安全设置/维护
  • (转)我也是一只IT小小鸟
  • ****** 二十三 ******、软设笔记【数据库】-数据操作-常用关系操作、关系运算
  • ./和../以及/和~之间的区别
  • .bat批处理(二):%0 %1——给批处理脚本传递参数