当前位置: 首页 > news >正文

ThreadCache线程缓存

一.ThreadCache整体结构

1.基本结构

定长内存池利用一个自由链表管理释放回来的固定大小的内存obj。
ThreadCache需要支持申请和释放不同大小的内存块,因此需要多个自由链表来管理释放回来的内存块.即ThreadCache实际上一个哈希桶结构,每个桶中存放的都是一个自由链表。

2.对齐规则和下标索引

规定ThreadCache支持<=256KB内存的申请,如果我们将每种字节数的内存块都用一个自由链表进行管理的话,那么此时我们就需要20多万个自由链表,光是存储这些自由链表的头指针就需要消耗大量内存,这显然是得不偿失的。  
这时可以选择做一些平衡的牺牲,让一定区间内字节数统一为某个size,
然后用一个桶的自由链表来管理.
即按照某种规则进行内存对齐(但同时产生内碎片问题)

二.函数调用层次结构

//小于等于MAX_BYTES,就找thread cache申请
//大于MAX_BYTES,就直接找page cache或者系统堆申请
static const size_t MAX_BYTES = 256 * 1024;
//thread cache和central cache自由链表哈希桶的表大小
static const size_t NFREELISTS = 208;

三.FreeList的封装

NextObj管理内存obj的前4/8个字节,用来指向下一块内存
    size_t _maxSize = 1;//此时一次申请的最大obj个数
    size_t _size = 0;//自由链表中的内存obj的个数

static void*& NextObj(void* obj)
{return *(void**)obj;
}
// 管理切分好的小对象的自由链表
class FreeList
{
public:void Push(void* obj){assert(obj);// 头插NextObj(obj) = _freeList;_freeList = obj;++_size;}void PushRange(void* start, void* end, size_t n){NextObj(end) = _freeList;_freeList = start;_size += n;}void PopRange(void*& start, void*& end, size_t n){assert(n <= _size);start = _freeList;end = start;for (size_t i = 0; i < n - 1; ++i){end = NextObj(end);}_freeList = NextObj(end);NextObj(end) = nullptr;_size -= n;}void* Pop(){assert(_freeList);// 头删void* obj = _freeList;_freeList = NextObj(obj);--_size;return obj;}bool Empty(){return _freeList == nullptr;}size_t& MaxSize(){return _maxSize;}size_t Size(){return _size;}private:void* _freeList = nullptr;size_t _maxSize = 1;//此时一次申请的最大obj个数size_t _size = 0;//自由链表中的内存obj的个数
};

四.字节数向上对齐规则RoundUp

1.RoundUp基本逻辑

static inline size_t RoundUp(size_t size)
{if (size <= 128)return _RoundUp(size, 8);else if (size <= 1024)return _RoundUp(size, 16);else if (size <= 8 * 1024)return _RoundUp(size, 128);else if (size <= 64 * 1024)return _RoundUp(size, 1024);else if (size <= 256 * 1024)return _RoundUp(size, 8 * 1024);elsereturn _RoundUp(size, 1 << PAGE_SHIFT);}

2.子函数_RoundUp

	size_t _RoundUp(size_t size, size_t alignNum){size_t alignSize;if (size % alignNum != 0){alignSize = (size / alignNum + 1)*alignNum;}else{alignSize = size;}return alignSize;}

3.优化为位运算

static inline size_t _RoundUp(size_t bytes, size_t alignNum)
{return ((bytes + alignNum - 1) & ~(alignNum - 1));
}

五.字节数映射哈希桶下标Index

1.Index基本逻辑

	// 计算映射的哪一个自由链表桶static inline size_t Index(size_t bytes){assert(bytes <= MAX_BYTES);// 每个区间有多少个链static int group_array[4] = { 16, 56, 56, 56 };if (bytes <= 128) {return _Index(bytes, 3);}else if (bytes <= 1024) {return _Index(bytes - 128, 4) + group_array[0];}else if (bytes <= 8 * 1024) {return _Index(bytes - 1024, 7) + group_array[1] + group_array[0];}else if (bytes <= 64 * 1024) {return _Index(bytes - 8 * 1024, 10) + group_array[2] + group_array[1] + group_array[0];}else if (bytes <= 256 * 1024) {return _Index(bytes - 64 * 1024, 13) + group_array[3] + group_array[2] + group_array[1] + group_array[0];}else {assert(false);}return -1;}

2.子函数_Index

    size_t _Index(size_t bytes, size_t alignNum){if (bytes % alignNum == 0){return bytes / alignNum - 1;}else{return bytes / alignNum;}}

3.优化为位运算

	static inline size_t _Index(size_t bytes, size_t align_shift){return ((bytes + (1 << align_shift) - 1) >> align_shift) - 1;}

六.Allocate申请内存实现

 在ThreadCache申请对象时,通过所给字节数计算出对应的哈希桶下标,如果桶中自由链表不为空,则从该自由链表中pop一个对象进行返回即可;但如果此时自由链表为空,那么我们就需要从CentralCache进行获取了,即FetchFromCentralCache函数

void* ThreadCache::Allocate(size_t size)
{assert(size <= MAX_BYTES);//1.计算对齐后所需内存size_t alignSize = SizeClass::RoundUp(size);//2.计算要挂接的桶的下标size_t index = SizeClass::Index(size);if (!_freeLists[index].Empty()){return _freeLists[index].Pop();}else{return FetchFromCentralCache(index, alignSize);}
}

七.FetchFromCentralCache

每次ThreadCacheCentralCache申请对象时,我们先通过慢开始反馈调节算法计算出本次应该申请的对象的个数

  如果ThreadCache最终申请到对象的个数就是一个,那么直接将该对象返回即可。
ThreadCache中没有对象时,会向CentralCache中获取一个批量的内存obj(避免频繁申请)

ThreadCache最终申请到的是多个对象,将第一个对象返回后,还需要将剩下的对象挂到ThreadCache对应的哈希桶当中。

void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{// 慢开始反馈调节算法// 1、最开始不会一次向CentralCache一次批量要太多,因为要太多了可能用不完// 2、如果你不要这个size大小内存需求,那么batchNum就会不断增长,直到上限// 3、size越大,一次向CentralCache要的batchNum就越小// 4、size越小,一次向CentralCache要的batchNum就越大size_t batchNum = min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(size));if (_freeLists[index].MaxSize() == batchNum){_freeLists[index].MaxSize() += 1;}void* start = nullptr, * end = nullptr;size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, size);assert(actualNum >= 1);if (actualNum == 1){assert(start == end);return start;}_freeLists[index].PushRange(NextObj(start), end, actualNum - 1);return start;
}

NumMoveSize的实现

	// 一次thread cache从中心缓存获取多少个static size_t NumMoveSize(size_t size){assert(size > 0);// [2, 512],一次批量移动多少个对象的(慢启动)上限值// 小对象一次批量上限高// 小对象一次批量上限低int num = MAX_BYTES / size;if (num < 2)num = 2;//[0.5kb,128kb]if (num > 512)num = 512;return num;}

八.Deallocate释放内存实现

 当某个线程申请的对象不用了,可以将其释放给ThreadCache,然后ThreadCache将该对象插入到对应哈希桶的自由链表当中即可。

  但是随着线程不断的释放,对应自由链表的长度也会越来越长,这些内存堆积在一个thread cache中就是一种浪费,我们应该将这些内存还给CentralCache
这样一来,这些内存对其他线程来说也是可申请的,因此当ThreadCache某个桶当中的自由链表太长时我们可以进行一些处理。  
当ThreadCache某个桶当中自由链表的长度超过它一次批量CentralCache申请的对象个数,那么此时我们就要把该自由链表当中的这些对象还给CentralCache

void ThreadCache::Deallocate(void* obj, size_t size)
{assert(obj);assert(size <= MAX_BYTES);//1.将释放的内存还到_freeLists对应的桶中size_t index = SizeClass::Index(size);_freeLists[index].Push(obj);//2._freeLists[index]挂的桶数大于最近的一个批量就还给CentralCacheif (_freeLists[index].Size() >= _freeLists[index].MaxSize()){//3.从桶中获取一个批量的对象+还给CentralCacheListTooLong(_freeLists[index], size);}
}

ListTooLong获取内存块批量

void ThreadCache::ListTooLong(FreeList& list, size_t size)
{assert(size > 0);void* start, * end = nullptr;//[begin,end]即为取出的批量//将批量还给CentralCache对应的spanlist.PopRange(start, end, list.MaxSize());CentralCache::GetInstance()->ReleaseListToSpans(start, size);
}

九.ThreadCacheTLS线程局部存储

  每个线程都有一个自己独享的thread cache,那应该如何创建这个thread cache呢?我们不能将这个thread cache创建为全局的,因为全局变量是所有线程共享的,这样就不可避免的需要锁来控制,增加了控制成本和代码复杂度。  

要实现每个线程无锁的访问属于自己的thread cache,我们需要用到线程局部存储TLS(Thread Local Storage),使用该存储方法的变量在它所在的线程是全局可访问的,但是不能被其他线程访问到,这样就保持了数据的线程独立性。

//TLS - Thread Local Storage
static _declspec(thread) ThreadCache* pTLSThreadCache = nullptr;

十.ThreadCache.cpp

#include "ThreadCache.h"
#include "CentralCache.h"void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{// 慢开始反馈调节算法// 1、最开始不会一次向CentralCache一次批量要太多,因为要太多了可能用不完// 2、如果你不要这个size大小内存需求,那么batchNum就会不断增长,直到上限// 3、size越大,一次向CentralCache要的batchNum就越小// 4、size越小,一次向CentralCache要的batchNum就越大size_t batchNum = min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(size));if (_freeLists[index].MaxSize() == batchNum){_freeLists[index].MaxSize() += 1;}void* start = nullptr, * end = nullptr;size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, size);assert(actualNum >= 1);if (actualNum == 1){assert(start == end);return start;}_freeLists[index].PushRange(NextObj(start), end, actualNum - 1);return start;
}void* ThreadCache::Allocate(size_t size)
{assert(size <= MAX_BYTES);//1.计算对齐后所需内存size_t alignSize = SizeClass::RoundUp(size);//2.计算要挂接的桶的下标size_t index = SizeClass::Index(size);if (!_freeLists[index].Empty()){return _freeLists[index].Pop();}else{return FetchFromCentralCache(index, alignSize);}
}void ThreadCache::Deallocate(void* obj, size_t size)
{assert(obj);assert(size <= MAX_BYTES);//1.将释放的内存还到_freeLists对应的桶中size_t index = SizeClass::Index(size);_freeLists[index].Push(obj);//2._freeLists[index]挂的桶数大于最近的一个批量就还给CentralCacheif (_freeLists[index].Size() >= _freeLists[index].MaxSize()){//3.从桶中获取一个批量的对象+还给CentralCacheListTooLong(_freeLists[index], size);}
}void ThreadCache::ListTooLong(FreeList& list, size_t size)
{assert(size > 0);void* start, * end = nullptr;//[begin,end]即为取出的批量//将批量还给CentralCache对应的spanlist.PopRange(start, end, list.MaxSize());CentralCache::GetInstance()->ReleaseListToSpans(start, size);
}

相关文章:

  • linux install cmake3.22
  • Apache POI(使用Java读写Excel表格数据)
  • Flutter 中的 ListWheelViewport 小部件:全面指南
  • Docker安装、使用,容器化部署springboot项目
  • 机器学习——卷积神经网络
  • 【ARM Cache 系列文章 2.1 -- Cache PoP 及 PoDP 介绍】
  • shell编程(二)——字符串与数组
  • 【Java】/*抽象类和接口*/
  • Sylar---协程调度模块
  • [AIGC] CompletableFuture的重要方法有哪些?
  • Android - RadioGroup中多个radiobutton同时被选中问题
  • Vue3学习第二天记录
  • 服务部署:.NET项目使用Docker构建镜像与部署
  • TCP和udp能使用同一个端口通讯吗
  • IO-源码阅读 glibc 2.35
  • IE9 : DOM Exception: INVALID_CHARACTER_ERR (5)
  • [分享]iOS开发-关于在xcode中引用文件夹右边出现问号的解决办法
  • 【每日笔记】【Go学习笔记】2019-01-10 codis proxy处理流程
  • 【刷算法】求1+2+3+...+n
  • 2019年如何成为全栈工程师?
  • angular学习第一篇-----环境搭建
  • co.js - 让异步代码同步化
  • ES6 学习笔记(一)let,const和解构赋值
  • hadoop集群管理系统搭建规划说明
  • JavaScript/HTML5图表开发工具JavaScript Charts v3.19.6发布【附下载】
  • Java精华积累:初学者都应该搞懂的问题
  • Java新版本的开发已正式进入轨道,版本号18.3
  • jdbc就是这么简单
  • MYSQL 的 IF 函数
  • mysql常用命令汇总
  • Selenium实战教程系列(二)---元素定位
  • 给自己的博客网站加上酷炫的初音未来音乐游戏?
  • 互联网大裁员:Java程序员失工作,焉知不能进ali?
  • 基于遗传算法的优化问题求解
  • 计算机常识 - 收藏集 - 掘金
  • 聊聊flink的BlobWriter
  • 前端存储 - localStorage
  • 前端学习笔记之原型——一张图说明`prototype`和`__proto__`的区别
  • 使用权重正则化较少模型过拟合
  • TPG领衔财团投资轻奢珠宝品牌APM Monaco
  • ​浅谈 Linux 中的 core dump 分析方法
  • ###51单片机学习(1)-----单片机烧录软件的使用,以及如何建立一个工程项目
  • #快捷键# 大学四年我常用的软件快捷键大全,教你成为电脑高手!!
  • #每日一题合集#牛客JZ23-JZ33
  • #数据结构 笔记一
  • %@ page import=%的用法
  • (AngularJS)Angular 控制器之间通信初探
  • (十一)JAVA springboot ssm b2b2c多用户商城系统源码:服务网关Zuul高级篇
  • *ST京蓝入股力合节能 着力绿色智慧城市服务
  • .bat批处理出现中文乱码的情况
  • .net core 连接数据库,通过数据库生成Modell
  • .NET 实现 NTFS 文件系统的硬链接 mklink /J(Junction)
  • .NET8 动态添加定时任务(CRON Expression, Whatever)
  • .NET技术成长路线架构图
  • .NET性能优化(文摘)