当前位置: 首页 > news >正文

Linux DMA-Buf驱动框架

一、DMABUF 框架

dmabuf 是一个驱动间共享buf 的机制,他的简单使用场景如下:

在这里插入图片描述

用户从DRM(显示驱动)申请一个dmabuf,把dmabuf 设置给GPU驱动,并启动GPU将数据输出到dmabuf,GPU输出完成后,再将dmabuf设置到DRM 驱动,完成画面的显示。

在这个过程中通过共享dmabuf的方式,避免了GPU输出数据拷贝到drm frame buff的动作。

如下所示,dmabuf 框架分为用户层和驱动层,用户层可以通过 /dev/dmabuf_heap/xxx节点,从名称为xxx的dma heap 中申请dmabuf。申请到的dmabuf 在用户层的视角就是一个文件,并由fd 标识一个dmabuf。将fd 通过DRM、GPU接口传给驱动,驱动就能共享这个dmabuf。

以下是一个简单的dmabuf 的示例代码:

int fd, dmabuf_fd;
struct dma_heap_allocation_data data;
struct pollfd fds;data.len = 1024 * 1024 * 4;
//打开dma heap
fd = open("/dev/dma-heap/xxx");//从dma heap 申请dmabuf
ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data);//将dmabuf的fd 设置到gpu进行处理
set_dmabuf_to_gpu(data.fd);//等待gpu 输出完毕
fds.fd = data.fd;
fds.events = POLLIN | POLLOUT;
poll(fds, 1, TIMEOUT);//将dmabuf 设置到drm显示
set_dmabuf_to_drm(data.fd);//等待显示完成
poll(fds, 1, TIMEOUT);//释放dmabuf
close(data.fd);

二、DMA Heap

dma heap 就是一个dmabuf 内存池,让用户可以从内存池中申请dmabuf。其代码主要在dma-heap.c,设备驱动可以创建自己的dma heap,从而提供给用户申请dmabuf。例如DRM驱动可以创建一个DRM dma heap。DRM驱动最重要的就算实现struct dma_heap_ops 对象,这个对象需要实现allocate() 函数,即当用户从dma heap 申请dmabuf 时,DRM驱动要如何分配真实的物理内存。

struct dma_heap_ops {int (*allocate)(struct dma_heap *heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags);
};struct dma_heap {const char *name;const struct dma_heap_ops *ops; //主要实现申请dmabuf的回调函数void *priv;dev_t heap_devt;struct list_head list;struct cdev heap_cdev;
};

dma-heap.c 中其他的代码主要是实现一个简单设备驱动,提供接口给用户。

三、dmabuf

3.1、dmabuf使用场景

在dmabuf 的使用场景中,有两种驱动:exporter 和 importer。

  • exporter 是dmabuf 的提供者,是实现dma heap的驱动程序,负责dmabuf 对应的物理内存的申请、释放、映射等实现。
  • importer 是dmabuf的使用者,是使用dmabuf 进行输入输出数据的驱动程序,他不关心dmabuf的申请释放,只需要往dmabuf 里读写数据即可。

像上述例子中,DRM驱动首先是exporter,允许用户从dma heap申请内存,又是importer,从dmabuf 中读取数据显示到屏幕。而GPU是纯纯的importer,向dmabuf 中写入数据。

这两种角色的关系如下图所示:

在这里插入图片描述

从上述图可见dma_buf_ops 的实现至关重要。所以接下来我们关注dmabuf是如何被创建的。

3.2、dmabuf的创建

dmabuf 是如何从dma heap 中被申请出来的?这部分主要是在allocate回调函数实现的,在大部分驱动中,allocate回调函数中会从物理内存中申请内存,并 调用dma_buf_export() 创建一个dmabuf 对象。

所以我们的重点将分析 dma_buf_export() 函数是如何创建一个dmabuf 对象的。

首先还是看dmabuf 的结构体定义:

struct dma_buf {size_t size;struct file *file;                 //匿名文件,代表该dmabuf,暴露给用户从而支持跨驱动传输struct list_head attachments;      //attachment 链表const struct dma_buf_ops *ops;     //重要的回调函数void *vmap_ptr;                    //dmabuf kernel 地址struct dma_resv *resv;             //保留区,用于存放dma fence对象/* poll support */wait_queue_head_t poll;            //等待队列,用于pollstruct dma_buf_poll_cb_t {struct dma_fence_cb cb;wait_queue_head_t *poll;__poll_t active;} cb_excl, cb_shared;              //用于poll、dma fence
};

以下是dma_buf_export() 的简略版,很简单就是根据exp_info 初始化dmabuf对象,并创建一个文件,将dmabuf 与文件绑定起来。

struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
{//初始dmabuf 对象dmabuf = kzalloc(alloc_size, GFP_KERNEL);dmabuf->priv = exp_info->priv;dmabuf->ops = exp_info->ops;dmabuf->size = exp_info->size;dmabuf->exp_name = exp_info->exp_name;dmabuf->owner = exp_info->owner;spin_lock_init(&dmabuf->name_lock);init_waitqueue_head(&dmabuf->poll);dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;if (!resv) {resv = (struct dma_resv *)&dmabuf[1];dma_resv_init(resv);}dmabuf->resv = resv;//初始化filefile = dma_buf_getfile(dmabuf, exp_info->flags);file->f_mode |= FMODE_LSEEK;dmabuf->file = file;mutex_init(&dmabuf->lock);INIT_LIST_HEAD(&dmabuf->attachments);//添加到全局链表mutex_lock(&db_list.lock);list_add(&dmabuf->list_node, &db_list.head);mutex_unlock(&db_list.lock);return dmabuf;
}

3.3、dma_buf_ops

exporter驱动只关注struct dma_buf_export_info 对象即可,最重要的是struct dma_buf_ops对象的实现,这点需要根据具体的驱动实现。所以下面分析这些回调函数的含义是什么:

struct dma_buf_ops {//判断当前设备是否能够访问dmabuf的物理内存,一些物理内存只能由指定的设备访问如vram。若设备可以访问改物理内存,则返回一个attachment代表此次访问int (*attach)(struct dma_buf *, struct dma_buf_attachment *);//释放之前获取的attachmentvoid (*detach)(struct dma_buf *, struct dma_buf_attachment *);//importer 调用这个函数,锁定dmabuf的物理内存,使其不能被迁移int (*pin)(struct dma_buf_attachment *attach);//解锁物理内存void (*unpin)(struct dma_buf_attachment *attach);//将dmabuf的物理内存映射到importer的地址空间,表示importer要开始访问物理内存//因为exporter要让所以attach的设备都能访问,所以可能要将物理内存移动到合适的地址,所以函数可能休眠//返回一个sg_table,表示物理地址散列表struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,enum dma_data_direction);//解除映射并释放sg_tablevoid (*unmap_dma_buf)(struct dma_buf_attachment *,struct sg_table *,enum dma_data_direction);//释放dmabuf,exporter在这个函数释放私有数据void (*release)(struct dma_buf *);//importer在使用cpu读取dmabuf前,调用该接口让exporter 确保数据在内存上且cpu能读取到正确的数据int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);//结束cpu 访问int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);//将dmabuf 物理内存map 到用户地址空间int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);//将dmabuf 物理内存map到内核地址空间void *(*vmap)(struct dma_buf *);void (*vunmap)(struct dma_buf *, void *vaddr);
};

dmabuf框架将一个驱动访问物理内存的动作拆分成这么多个步骤,目的就是为了多个设备能共享一个物理内存,而每个设备的访问能力,访问地址空间都可能不一样,这就需要将访问过程细细拆分,协调好每个设备的访问顺序和关系。

四、dma-fence

dma fence 是用于做同步的。考虑以下场景:

一个dmabuf,先由GPU完成渲染,然后再交给DRM进行显示输出。那么GPU渲染完成后,如何通知DRM进行显示输出呢?也就是GPU和DRM之前如何进行同步?这就需要引入fence用于设备间的同步,fence用于表示一个操作的完成状态,故fence有两个状态,not done和done。

首先GPU在开始渲染操作前,创建一个fence,注册回调函数,将fence添加到dmabuf 中,随后DRM 等待该fence done。当GPU渲染完成中断上来后,会通知fence done。随后DRM线程被唤醒,进行显示操作。

另外,dma fence还需要考虑多设备访问的情况,即可能有多个设备在等待fence完成,那么fence就必须支持多个设备的等待。

那么就先看dma fence的定义:

struct dma_fence {spinlock_t *lock;const struct dma_fence_ops *ops;union {struct list_head cb_list;  //回调函数链表,每个等待fence的驱动,都需要注册一个回调节点到该链表,当fence done时,会遍历该链表执行所有驱动的回调函数。/* @cb_list replaced by @timestamp on dma_fence_signal() */ktime_t timestamp;/* @timestamp replaced by @rcu on dma_fence_release() */struct rcu_head rcu;};u64 context;u64 seqno;unsigned long flags;struct kref refcount;int error;
};

如图所示:GPU线程会在操作dmabuf 前,创建fence,并等待fence完成,同时DRM也会等待该fence完成。当GPU渲染完成中断产生后,会调用fence done,依次唤醒GPU、DRM线程,GPU线程此时就可以继续下一帧图像的渲染,而DRM就可以将已经完成渲染的图像显示到屏幕。

在这里插入图片描述

这个过程中调用的接口有:

  1. dma_fence_init():初始化一个dma fence对象
  2. dma_resv_reserve_shared() :从dma resv 中保留一个share fence 指针
  3. dma_resv_add_shared_fence():将dma fence添加到resv 对象
  4. dma_fence_default_wait():向dma fence注册回调函数dma_fence_default_wait_cb,并睡眠等待dma fence完成
  5. dma_fence_signal():标志dma fence 完成,并回调dma fence 中的所有回调函数

其中有一个叫dma_resv的对象,简单来说dma_resv 是一个存放dma fence的地方,一个dmabuf 可能同时有若干个dma fence,且dma fence还有共享和独占两种。dma_resv可以理解为一块内存区域,专门存放dma fence的,故要将dma fence添加到dmabuf时,要先调用dma_resv_reserve_shared() 预留出dma fence的位置,然后再调用dma_resv_add_shared_fence() 添加到dma resv。

五、poll

前面所述都是在内核态,但对于用户来说,也希望获取到设备的同步信息。例如在本文一开始的例子中,用户会使用poll 系统调用等待gpu渲染完成。这一切都是由dma_buf_fops来实现的。

在3.2中提到dmabuf的创建中,有一个步骤会创建匿名文件,这个匿名文件就是用于暴露给用户的接口。这个文件代表了一个dmabuf,用户通过该文件的fd可以操作该dmabuf的一些功能,dma_buf_fops是所有dmabuf 共享的file_operations,其中就包括poll的实现。

当用户调用poll 系统调用等待dmabuf时,会遍历dmabuf 上的所有fence,并将回调函数dma_buf_poll_cb注册到每一个fence上,并进入休眠。当有任意一个fence done时,就会唤醒用户线程,从而退出poll。

相关文章:

  • 超文本标记语言(HTML)简介
  • 基于Python+Flask+MySQL+HTML的B站数据可视化分析系统
  • uniapp使用css实现瀑布流
  • maven部署打包的pom配置
  • 即时聊天系统
  • TCP三次握手的过程
  • Github 2024-06-14 开源项目日报Top10
  • C语言之#define #if 预处理器指令
  • HTML前端
  • 基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[0]-模型、工具、分词器等支持列表
  • VSCode插件开发之初始化项目
  • GPRS与4G网络:技术差异与应用选择
  • PHP入门教程1:PHP的基础概念和基本语法
  • 17个有用的CLI命令
  • 跨文化美学实践:以‘Shockman登峰侠‘为例探析翻译艺术与文化意蕴
  • Dubbo 整合 Pinpoint 做分布式服务请求跟踪
  • EventListener原理
  • vue2.0项目引入element-ui
  • 编写高质量JavaScript代码之并发
  • 规范化安全开发 KOA 手脚架
  • 基于Volley网络库实现加载多种网络图片(包括GIF动态图片、圆形图片、普通图片)...
  • 如何合理的规划jvm性能调优
  • 入门级的git使用指北
  • 通过git安装npm私有模块
  • 中文输入法与React文本输入框的问题与解决方案
  • 东超科技获得千万级Pre-A轮融资,投资方为中科创星 ...
  • 基于django的视频点播网站开发-step3-注册登录功能 ...
  • 通过调用文摘列表API获取文摘
  • ​二进制运算符:(与运算)、|(或运算)、~(取反运算)、^(异或运算)、位移运算符​
  • ​决定德拉瓦州地区版图的关键历史事件
  • #NOIP 2014# day.1 生活大爆炸版 石头剪刀布
  • $$$$GB2312-80区位编码表$$$$
  • $jQuery 重写Alert样式方法
  • (八)Spring源码解析:Spring MVC
  • (八十八)VFL语言初步 - 实现布局
  • (二)Eureka服务搭建,服务注册,服务发现
  • (简单有案例)前端实现主题切换、动态换肤的两种简单方式
  • (介绍与使用)物联网NodeMCUESP8266(ESP-12F)连接新版onenet mqtt协议实现上传数据(温湿度)和下发指令(控制LED灯)
  • (七)理解angular中的module和injector,即依赖注入
  • (强烈推荐)移动端音视频从零到上手(下)
  • (淘宝无限适配)手机端rem布局详解(转载非原创)
  • (一)pytest自动化测试框架之生成测试报告(mac系统)
  • (转) ns2/nam与nam实现相关的文件
  • (转载)hibernate缓存
  • ***通过什么方式***网吧
  • .jks文件(JAVA KeyStore)
  • .NET Compact Framework 多线程环境下的UI异步刷新
  • .NET MVC 验证码
  • .net分布式压力测试工具(Beetle.DT)
  • .Net实现SCrypt Hash加密
  • @Autowired标签与 @Resource标签 的区别
  • @value 静态变量_Python彻底搞懂:变量、对象、赋值、引用、拷贝
  • [ vulhub漏洞复现篇 ] GhostScript 沙箱绕过(任意命令执行)漏洞CVE-2019-6116
  • [20170713] 无法访问SQL Server
  • [2024] 十大免费电脑数据恢复软件——轻松恢复电脑上已删除文件