当前位置: 首页 > news >正文

【CS.AL】算法核心之贪心算法:从入门到进阶

文章目录

    • 1. 概述
    • 2. 适用场景
    • 3. 设计步骤
    • 4. 优缺点
    • 5. 典型应用
    • 6. 题目和代码示例
      • 6.1 简单题目:找零问题
      • 6.2 中等题目:区间调度问题
      • 6.3 困难题目:分数背包问题
    • 7. 题目和思路表格
    • 8. 总结
    • References

1000.1.CS.AL.1.4-核心-GreedyAlgorithm-Created: 2024-06-13.Thursday17:47
在这里插入图片描述

1. 概述

贪心算法是一种求解优化问题的算法策略。在每一步选择中,贪心算法都会选择当前最优解,希望通过一系列局部最优解的选择,达到全局最优解。贪心算法不回溯,不进行全局考虑,而是根据局部情况作出当前最优的选择。

2. 适用场景

贪心算法适用于一类特殊问题,即具有贪心选择性质的问题。这类问题满足每一步的选择都是局部最优的,并且不同步骤之间没有依赖关系,可以独立地做出选择。在这种情况下,贪心算法通常可以找到全局最优解或者近似最优解。

3. 设计步骤

  1. 确定问题的最优解性质:贪心算法求解问题时,首先要确定问题是否具有最优子结构和贪心选择性质。如果满足这两个性质,那么贪心算法可能是可行的。
  2. 选择合适的贪心策略:在每一步中,需要选择一个局部最优解。这就要根据问题的具体特点,设计适合的贪心策略,使得每次选择都是当前的最优解。
  3. 构建贪心算法:根据选择的贪心策略,逐步构建出贪心算法,不断做出当前最优的选择,直至达到全局最优解或者满足问题的要求。

4. 优缺点

  • 优点:贪心算法通常简单、高效,且易于实现。在一些特定问题中,贪心算法可以快速找到最优或近似最优解。
  • 缺点:贪心算法并不适用于所有问题,有些问题并不具备贪心选择性质,因此贪心算法可能得到局部最优解而不是全局最优解。在这种情况下,需要考虑其他算法策略。

5. 典型应用

  • 最小生成树问题:如Prim算法和Kruskal算法用于求解图中的最小生成树。
  • 背包问题:如分数背包问题、0-1背包问题等,贪心算法在某些情况下可以得到近似最优解。
  • 霍夫曼编码:用于数据压缩,通过贪心选择构建最优前缀编码。
  • 最短路径问题:如Dijkstra算法和A*算法用于求解图中的最短路径。

6. 题目和代码示例

6.1 简单题目:找零问题

题目描述:给定不同面值的硬币,求最少硬币数使得总金额为给定值。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 函数声明
int coinChange(std::vector<int>& coins, int amount);int main() {std::vector<int> coins = {1, 2, 5};int amount = 11;std::cout << "最少硬币数: " << coinChange(coins, amount) << std::endl;return 0;
}// 找零问题:求最少硬币数
int coinChange(std::vector<int>& coins, int amount) {// 步骤 1: 对硬币面值从大到小排序std::sort(coins.rbegin(), coins.rend());int count = 0;// 步骤 2: 遍历硬币面值,逐步减少目标金额for (int coin : coins) {while (amount >= coin) {amount -= coin;count++;}}// 步骤 3: 检查是否正好找零成功return amount == 0 ? count : -1;
}

Ref. ![[1000.03.CS.PL.C++.4.2-STL-Algorithms-SortingOperations#1.1 简述]]

Others.

def coin_change(coins, amount):coins.sort(reverse=True)count = 0for coin in coins:while amount >= coin:amount -= coincount += 1return count if amount == 0 else -1# 示例
coins = [1, 2, 5]
amount = 11
print(coin_change(coins, amount))  # 输出: 3 (5 + 5 + 1)

6.2 中等题目:区间调度问题

题目描述:给定多个会议的开始和结束时间,求最多能安排的会议数量。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 会议结构体
struct Meeting {int start;int end;
};// 函数声明
int maxMeetings(std::vector<Meeting>& meetings);int main() {std::vector<Meeting> meetings = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};std::cout << "最多能安排的会议数量: " << maxMeetings(meetings) << std::endl;return 0;
}// 区间调度问题:求最多能安排的会议数量
int maxMeetings(std::vector<Meeting>& meetings) {// 步骤 1: 根据会议结束时间排序std::sort(meetings.begin(), meetings.end(), [](const Meeting& a, const Meeting& b) {return a.end < b.end;});int count = 0;int endTime = 0;// 步骤 2: 遍历会议,选择结束时间最早的会议for (const auto& meeting : meetings) {if (meeting.start >= endTime) {count++;endTime = meeting.end;}}return count;
}

ref.

def max_meetings(meetings):meetings.sort(key=lambda x: x[1])count = 0end_time = 0for meeting in meetings:if meeting[0] >= end_time:count += 1end_time = meeting[1]return count# 示例
meetings = [(1, 2), (3, 4), (0, 6), (5, 7), (8, 9), (5, 9)]
print(max_meetings(meetings))  # 输出: 4

6.3 困难题目:分数背包问题

题目描述:给定物品的重量和价值,求在背包容量限制下的最大价值,物品可以分割。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 物品结构体
struct Item {double value;double weight;
};// 函数声明
double fractionalKnapsack(std::vector<Item>& items, double capacity);int main() {std::vector<Item> items = {{60, 10}, {100, 20}, {120, 30}};double capacity = 50;std::cout << "背包的最大价值: " << fractionalKnapsack(items, capacity) << std::endl;return 0;
}// 分数背包问题:求在背包容量限制下的最大价值
double fractionalKnapsack(std::vector<Item>& items, double capacity) {// 步骤 1: 根据物品单位重量价值排序std::sort(items.begin(), items.end(), [](const Item& a, const Item& b) {return (a.value / a.weight) > (b.value / b.weight);});double totalValue = 0;// 步骤 2: 遍历物品,选择单位重量价值最高的物品for (const auto& item : items) {if (capacity >= item.weight) {capacity -= item.weight;totalValue += item.value;} else {totalValue += item.value * (capacity / item.weight);break;}}return totalValue;
}

ref.

def fractional_knapsack(values, weights, capacity):items = list(zip(values, weights))items.sort(key=lambda x: x[0] / x[1], reverse=True)total_value = 0for value, weight in items:if capacity >= weight:capacity -= weighttotal_value += valueelse:total_value += value * (capacity / weight)breakreturn total_value# 示例
values = [60, 100, 120]
weights = [10, 20, 30]
capacity = 50
print(fractional_knapsack(values, weights, capacity))  # 输出: 240.0

7. 题目和思路表格

序号题目题目描述贪心策略代码实现
1找零问题求最少硬币数使得总金额为给定值每次选择面值最大的硬币代码
2区间调度问题求最多能安排的会议数量每次选择结束时间最早的会议代码
3分数背包问题求在背包容量限制下的最大价值每次选择单位重量价值最高的物品代码
4最小生成树用于求解图中的最小生成树每次选择权重最小的边-
5霍夫曼编码用于数据压缩每次选择频率最低的节点进行合并-
6最短路径用于求解图中的最短路径每次选择当前节点到未访问节点的最短路径-
7活动选择问题求最多可选择的互不相交的活动每次选择结束时间最早的活动-
8跳跃游戏判断能否跳到最后一个位置每次选择跳跃距离最大的步骤-
9加油站问题求最少加油次数到达目的地每次选择油量最多的加油站-
10股票买卖求最大收益每次选择局部最低点买入,局部最高点卖出-

8. 总结

贪心算法是一种简单而高效的算法策略,在解决满足贪心选择性质的问题时,能够得到较好的结果。然而,要注意贪心算法的局限性,它不适用于所有问题,有些问题需要考虑其他算法设计策略,如分治、动态规划等。因此,在实际应用中,需要根据问题的性质和要求选择合适的算法策略。通过理解和掌握上述贪心算法的例子和思路,能够有效地提升解决问题的能力。

References

相关文章:

  • 基于springboot的大学计算机基础网络教学系统
  • css的应用
  • CompletableFuture.runAsync的多线程下异步操作
  • Linux-黑马程序员
  • 最大连续子序列和问题详解
  • Java课设项目
  • Docker Nginx
  • C++访问Private,Protecd的一些方法总结
  • 数据分析的流程是啥样?
  • web前端教程全套:从入门到精通的全方位探索
  • Rust 异步 trait 的实现困难
  • 【linux】认识“文件”的本质,理解“文件系统”的设计逻辑,体会linux优雅的设计理念
  • FreeBSD jail里面pkg 无法update、search和install
  • 零基础到高手蜕变:一步到位Jupyter Notebook安装全攻略
  • Wifi通信协议:WEP,WPA,WPA2,WPA3,WPS
  • [PHP内核探索]PHP中的哈希表
  • github从入门到放弃(1)
  • Git的一些常用操作
  • Nacos系列:Nacos的Java SDK使用
  • react-core-image-upload 一款轻量级图片上传裁剪插件
  • Vue2 SSR 的优化之旅
  • vue2.0一起在懵逼的海洋里越陷越深(四)
  • vue的全局变量和全局拦截请求器
  • 阿里云应用高可用服务公测发布
  • 闭包,sync使用细节
  • 分享一份非常强势的Android面试题
  • 高度不固定时垂直居中
  • 可能是历史上最全的CC0版权可以免费商用的图片网站
  • 如何在GitHub上创建个人博客
  • 扫描识别控件Dynamic Web TWAIN v12.2发布,改进SSL证书
  • 深度学习在携程攻略社区的应用
  • 网页视频流m3u8/ts视频下载
  • 一加3T解锁OEM、刷入TWRP、第三方ROM以及ROOT
  • 在GitHub多个账号上使用不同的SSH的配置方法
  • Android开发者必备:推荐一款助力开发的开源APP
  • 扩展资源服务器解决oauth2 性能瓶颈
  • 摩拜创始人胡玮炜也彻底离开了,共享单车行业还有未来吗? ...
  • ​configparser --- 配置文件解析器​
  • ​iOS安全加固方法及实现
  • ​MySQL主从复制一致性检测
  • (JS基础)String 类型
  • (react踩过的坑)Antd Select(设置了labelInValue)在FormItem中initialValue的问题
  • (Redis使用系列) SpringBoot 中对应2.0.x版本的Redis配置 一
  • (ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCUR_READ_ONLY)讲解
  • (二)springcloud实战之config配置中心
  • (三)Pytorch快速搭建卷积神经网络模型实现手写数字识别(代码+详细注解)
  • (算法)N皇后问题
  • (学习日记)2024.03.25:UCOSIII第二十二节:系统启动流程详解
  • (轉貼) 蒼井そら挑戰筋肉擂台 (Misc)
  • * 论文笔记 【Wide Deep Learning for Recommender Systems】
  • *(长期更新)软考网络工程师学习笔记——Section 22 无线局域网
  • .MSSQLSERVER 导入导出 命令集--堪称经典,值得借鉴!
  • .net 写了一个支持重试、熔断和超时策略的 HttpClient 实例池
  • .NET/C# 将一个命令行参数字符串转换为命令行参数数组 args
  • .net快速开发框架源码分享