当前位置: 首页 > news >正文

多元多项式的特征列与零点的关系定理

下面这个定理来自《计算机代数》6.1三角列与特征列(王东明、夏壁灿著)

【定理】

C = [ C 1 , … , C r ] \mathbb{C =}\left\lbrack C_{1},\ldots,C_{r} \right\rbrack C=[C1,,Cr]为多项式组 P ⊂ K [ x ] \mathbb{P \subset}\mathcal{K\lbrack}\mathbf{x}\rbrack PK[x]的特征列,且命

I i = i n i ( C i ) P i = P ∪ { I i } i = 1 , … , r I_{i} = ini\left( C_{i} \right)\ \ \ \ \ \ \mathbb{P}_{i}\mathbb{= P \cup}\left\{ I_{i} \right\}\ \ \ \ \ i = 1,\ldots,r Ii=ini(Ci)      Pi=P{Ii}     i=1,,r

I = i n i ( C ) = { I 1 , … , I r } \mathbb{I =}ini\left( \mathbb{C} \right) = \left\{ I_{1},\ldots,I_{r} \right\} I=ini(C)={I1,,Ir}

Z e r o ( C \ I ) ⊂ Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(C\I)Zero(P)Zero(C)

Z e r o ( P ) = Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) = Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)=Zero(C\I)i=1rZero(Pi)

K \mathcal{K} K以及 K \mathcal{K} K的任意扩域中成立

【证明】

  1. Z e r o ( C \ I ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) Zero(C\I)Zero(P)

由于 C = [ C 1 , … , C r ] \mathbb{C =}\left\lbrack C_{1},\ldots,C_{r} \right\rbrack C=[C1,,Cr]为多项式组 P ⊂ K [ x ] \mathbb{P \subset}\mathcal{K\lbrack}\mathbf{x}\rbrack PK[x]的特征列,所以 p r e m ( P , C ) = { 0 } prem\left( \mathbb{P,C} \right) = \left\{ 0 \right\} prem(P,C)={0},也就是说对于任意 P ∈ P P \in \mathbb{P} PP,都有

I 1 q 1 … I r q r P = ∑ i = 1 r C i I_{1}^{q_{1}}\ldots I_{r}^{q_{r}}P = \sum_{i = 1}^{r}C_{i} I1q1IrqrP=i=1rCi

而对于任意的 x ∈ Z e r o ( C \ I ) x \in Zero\left( \mathbb{C\backslash I} \right) xZero(C\I),都有 x ∉ Z e r o ( I 1 q 1 … I r q r ) x \notin Zero\left( I_{1}^{q_{1}}\ldots I_{r}^{q_{r}} \right) x/Zero(I1q1Irqr) x ∈ Z e r o ( C i ) x \in Zero\left( C_{i} \right) xZero(Ci),那么 P = 0 P = 0 P=0,可得 x ∈ Z e r o ( P ) x \in Zero\left( \mathbb{P} \right) xZero(P),即 Z e r o ( C \ I ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) Zero(C\I)Zero(P)

  1. Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(P)Zero(C)

根据特征列的定义,有 C ⊂ ⟨ P ⟩ \mathbb{C \subset}\left\langle \mathbb{P} \right\rangle CP,也就是

C i = ∑ P ∈ P k P P C_{i} = \sum_{P \in \mathbb{P}}^{}{k_{P}P} Ci=PPkPP

所以,当多项式 P P P的值为 0 0 0时, C i C_{i} Ci必为 0 0 0,即 Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(P)Zero(C)

  1. Z e r o ( P ) ⊂ Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)Zero(C\I)i=1rZero(Pi)

x ∈ Z e r o ( P ) x \in Zero\left( \mathbb{P} \right) xZero(P),根据2,那么有 x ∈ Z e r o ( C ) x \in Zero\left( \mathbb{C} \right) xZero(C)

x ∈ Z e r o ( I ) x \in Zero\left( \mathbb{I} \right) xZero(I),则 x ∈ ⋃ i = 1 r Z e r o ( I i ) x \in \bigcup_{i = 1}^{r}{Zero\left( I_{i} \right)} xi=1rZero(Ii),又因为 x ∈ Z e r o ( P ) x \in Zero\left( \mathbb{P} \right) xZero(P),所以 x ∈ ⋃ i = 1 r Z e r o ( P i ) x \in \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} xi=1rZero(Pi)

x ∉ Z e r o ( I ) x \notin Zero\left( \mathbb{I} \right) x/Zero(I),结合 x ∈ Z e r o ( C ) x \in Zero\left( \mathbb{C} \right) xZero(C),可得 x ∈ Z e r o ( C \ I ) x \in Zero\left( \mathbb{C\backslash I} \right) xZero(C\I)

结合上述两种情况的讨论,可得 Z e r o ( P ) ⊂ Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)Zero(C\I)i=1rZero(Pi)

  1. Z e r o ( P ) ⊃ Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) \supset Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)Zero(C\I)i=1rZero(Pi)

根据1, Z e r o ( C \ I ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) Zero(C\I)Zero(P)

因为 Z e r o ( P i ) ⊂ Z e r o ( P ) Zero\left( \mathbb{P}_{i} \right) \subset Zero\left( \mathbb{P} \right) Zero(Pi)Zero(P),所以 ⋃ i = 1 r Z e r o ( P i ) ⊂ Z e r o ( P ) \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} \subset Zero\left( \mathbb{P} \right) i=1rZero(Pi)Zero(P)

综合可得 Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} \subset Zero\left( \mathbb{P} \right) Zero(C\I)i=1rZero(Pi)Zero(P)

综合1、2可得
Z e r o ( C \ I ) ⊂ Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(C\I)Zero(P)Zero(C)

综合3、4可得
Z e r o ( P ) = Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) = Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)=Zero(C\I)i=1rZero(Pi)

相关文章:

  • 代码解读 | Hybrid Transformers for Music Source Separation[07]
  • 从中概回购潮,看互联网的未来
  • 一文彻底理解机器学习 ROC-AUC 指标
  • QT向已有ZIP中追加文件
  • (55)MOS管专题--->(10)MOS管的封装
  • WBTC与BTC的主要区别
  • 内网安全【2】-域防火墙
  • C++链表相关内容温习回顾——移除链表元素
  • 线程池吞掉异常的case:源码阅读与解决方法
  • 【Python支持多种数据类型及案列】
  • ROS系统中解析通过CAN协议传输的超声波传感器数据
  • nginx安装环境部署(完整步骤)
  • java如何截取字符串
  • 【亲测可用】docker进入正在运行的容器
  • 【代码随想录训练营】【Day 50】【动态规划-9】| Leetcode 198, 213, 337
  • 345-反转字符串中的元音字母
  • Angular2开发踩坑系列-生产环境编译
  • Django 博客开发教程 16 - 统计文章阅读量
  • JavaScript 奇技淫巧
  • Linux下的乱码问题
  • PHP 小技巧
  • RxJS: 简单入门
  • Three.js 再探 - 写一个跳一跳极简版游戏
  • VUE es6技巧写法(持续更新中~~~)
  • Vue.js源码(2):初探List Rendering
  • Windows Containers 大冒险: 容器网络
  • 动态魔术使用DBMS_SQL
  • 记录一下第一次使用npm
  • 解决jsp引用其他项目时出现的 cannot be resolved to a type错误
  • 来,膜拜下android roadmap,强大的执行力
  • 漂亮刷新控件-iOS
  • 前端临床手札——文件上传
  • 前端学习笔记之观察者模式
  • 实战|智能家居行业移动应用性能分析
  • 使用API自动生成工具优化前端工作流
  • 使用docker-compose进行多节点部署
  • 异步
  • 用Node EJS写一个爬虫脚本每天定时给心爱的她发一封暖心邮件
  • 智能网联汽车信息安全
  • ​决定德拉瓦州地区版图的关键历史事件
  • # 消息中间件 RocketMQ 高级功能和源码分析(七)
  • #大学#套接字
  • (007)XHTML文档之标题——h1~h6
  • (C11) 泛型表达式
  • (CVPRW,2024)可学习的提示:遥感领域小样本语义分割
  • (C语言)字符分类函数
  • (二)构建dubbo分布式平台-平台功能导图
  • (附源码)springboot助农电商系统 毕业设计 081919
  • (附源码)计算机毕业设计ssm高校《大学语文》课程作业在线管理系统
  • (六)激光线扫描-三维重建
  • (循环依赖问题)学习spring的第九天
  • (一)Thymeleaf用法——Thymeleaf简介
  • (一)硬件制作--从零开始自制linux掌上电脑(F1C200S) <嵌入式项目>
  • (原創) 如何將struct塞進vector? (C/C++) (STL)
  • (转)Android学习笔记 --- android任务栈和启动模式