当前位置: 首页 > news >正文

昇思25天学习打卡营第14天 | ShuffleNet图像分类

昇思25天学习打卡营第14天 | ShuffleNet图像分类

文章目录

  • 昇思25天学习打卡营第14天 | ShuffleNet图像分类
    • ShuffleNet
      • Pointwise Group Convolution
      • Channel Shuffle
      • ShuffleNet模块
      • 网络构建
    • 模型训练与评估
      • 数据集
      • 训练
      • 模型评估
      • 模型预测
    • 总结
    • 打卡

ShuffleNet

ShuffleNetV1是旷世科技提出的一种计算高效的CNN模型,这种模型利用有限的计算资源来达到最好的模型精度,主要应用在移动端。

ShuffleNetV1的核心是引入了两种操作:

  • Pointwise Group Convolution
  • Channel Shuffle
    这两种操作在保持精度的同时大大降低了模型的计算量。

Pointwise Group Convolution

Group Convolution(分组卷积)相对于普通卷积,每一组的卷积核大小为 in_channels / g ∗ k ∗ k \text{in\_channels} / g * k *k in_channels/gkk,一共有 g g g组,所有组共有 ( in_channels / g ∗ k ∗ k ) ∗ out_channels (\text{in\_channels}/g*k*k)*\text{out\_channels} (in_channels/gkk)out_channels个参数,是正常卷积参数的 1 / g 1/g 1/g
分组卷积的每个卷积核只处理特征图的一部分通道,但输出通道数仍等于卷积核的数量。
shufflenet2

图片来源:Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2752-2761.

Depthwise Convolution(深度可分离卷积)将输入特征图的每个通道分开,分别使用一个卷积核进行卷积,假设卷积核大小为 1 × k × k 1\times k\times k 1×k×k,其中 1 1 1表示只对一个通道进行卷积。由于有in_channels个卷积核,故有 in_channels × k × k \text{in\_channels}\times k \times k in_channels×k×k个参数,得到的特征图通道数与输入相同。

Pointwise Group Convolution(逐点分组卷积)在分组卷积的基础上,令每一组卷积核大小为 1 × 1 1\times 1 1×1,故共有 ( in_channels / g × 1 × 1 ) × out_channels (\text{in\_channels}/g\times1\times1)\times \text{out\_channels} (in_channels/g×1×1)×out_channels个参数。

from mindspore import nn
import mindspore.ops as ops
from mindspore import Tensorclass GroupConv(nn.Cell):def __init__(self, in_channels, out_channels, kernel_size,stride, pad_mode="pad", pad=0, groups=1, has_bias=False):super(GroupConv, self).__init__()self.groups = groupsself.convs = nn.CellList()for _ in range(groups):self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups,kernel_size=kernel_size, stride=stride, has_bias=has_bias,padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))def construct(self, x):features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)outputs = ()for i in range(self.groups):outputs = outputs + (self.convs[i](features[i].astype("float32")),)out = ops.cat(outputs, axis=1)return out

Channel Shuffle

Group Convolution只能保证组内的特征提取,而不同组之间的特征是不通信的,这就降低了网络的特征提取能力。
为了解决这个问题,ShuffleNet引入了Channel Shuffle机制,将不同分组通道均匀分散重组,使得网络在下一层能处理不同组别通道的信息。
shufflenet3
对于 g g g组,每组有 n n n个通道的特征图:

  1. reshape g × n g\times n g×n的矩阵;
  2. 转置为 n × g n\times g n×g的矩阵;
  3. 通过flatten操作得到新的排列。
    shufflenet4

ShuffleNet模块

ShuffleNet对ResNet中Bottleneck结构进行由(a)到(b), (c)的更改:
shufflenet5

  1. 将开始和最后的 1 × 1 1\times 1 1×1卷积模块改成Pointwise Group Convolution;
  2. 在降维后进行Channel Shuffle;
  3. 降采样模块中, 3 × 3 3\times 3 3×3Depthwise Convolution 的步长设置为2,特征图大小减半,因此shortcuts中采用步长为2的 3 × 3 3\times 3 3×3平均池化,并把相加改成拼接。
class ShuffleV1Block(nn.Cell):def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):super(ShuffleV1Block, self).__init__()self.stride = stridepad = ksize // 2self.group = groupif stride == 2:outputs = oup - inpelse:outputs = oupself.relu = nn.ReLU()branch_main_1 = [GroupConv(in_channels=inp, out_channels=mid_channels,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=1 if first_group else group),nn.BatchNorm2d(mid_channels),nn.ReLU(),]branch_main_2 = [nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,pad_mode='pad', padding=pad, group=mid_channels,weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(mid_channels),GroupConv(in_channels=mid_channels, out_channels=outputs,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=group),nn.BatchNorm2d(outputs),]self.branch_main_1 = nn.SequentialCell(branch_main_1)self.branch_main_2 = nn.SequentialCell(branch_main_2)if stride == 2:self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')def construct(self, old_x):left = old_xright = old_xout = old_xright = self.branch_main_1(right)if self.group > 1:right = self.channel_shuffle(right)right = self.branch_main_2(right)if self.stride == 1:out = self.relu(left + right)elif self.stride == 2:left = self.branch_proj(left)out = ops.cat((left, right), 1)out = self.relu(out)return outdef channel_shuffle(self, x):batchsize, num_channels, height, width = ops.shape(x)group_channels = num_channels // self.groupx = ops.reshape(x, (batchsize, group_channels, self.group, height, width))x = ops.transpose(x, (0, 2, 1, 3, 4))x = ops.reshape(x, (batchsize, num_channels, height, width))return x

网络构建

shufflenet6

class ShuffleNetV1(nn.Cell):def __init__(self, n_class=1000, model_size='2.0x', group=3):super(ShuffleNetV1, self).__init__()print('model size is ', model_size)self.stage_repeats = [4, 8, 4]self.model_size = model_sizeif group == 3:if model_size == '0.5x':self.stage_out_channels = [-1, 12, 120, 240, 480]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 240, 480, 960]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 360, 720, 1440]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 480, 960, 1920]else:raise NotImplementedErrorelif group == 8:if model_size == '0.5x':self.stage_out_channels = [-1, 16, 192, 384, 768]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 384, 768, 1536]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 576, 1152, 2304]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 768, 1536, 3072]else:raise NotImplementedErrorinput_channel = self.stage_out_channels[1]self.first_conv = nn.SequentialCell(nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(input_channel),nn.ReLU(),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')features = []for idxstage in range(len(self.stage_repeats)):numrepeat = self.stage_repeats[idxstage]output_channel = self.stage_out_channels[idxstage + 2]for i in range(numrepeat):stride = 2 if i == 0 else 1first_group = idxstage == 0 and i == 0features.append(ShuffleV1Block(input_channel, output_channel,group=group, first_group=first_group,mid_channels=output_channel // 4, ksize=3, stride=stride))input_channel = output_channelself.features = nn.SequentialCell(features)self.globalpool = nn.AvgPool2d(7)self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)def construct(self, x):x = self.first_conv(x)x = self.maxpool(x)x = self.features(x)x = self.globalpool(x)x = ops.reshape(x, (-1, self.stage_out_channels[-1]))x = self.classifier(x)return x

模型训练与评估

数据集

采用CIFAR-10数据集进行预训练。


![shufflenet6](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3/tutorials/application/source_zh_cn/cv/images/shufflenet_6.png)import mindspore as ms
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transformsdef get_dataset(train_dataset_path, batch_size, usage):image_trans = []if usage == "train":image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]elif usage == "test":image_trans = [vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]label_trans = transforms.TypeCast(ms.int32)dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True)dataset = dataset.map(image_trans, 'image')dataset = dataset.map(label_trans, 'label')dataset = dataset.batch(batch_size, drop_remainder=True)return datasetdataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "train")
batches_per_epoch = dataset.get_dataset_size()

训练

import time
import mindspore
import numpy as np
from mindspore import Tensor, nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor, Model, Top1CategoricalAccuracy, Top5CategoricalAccuracydef train():mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target="Ascend")net = ShuffleNetV1(model_size="2.0x", n_class=10)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)min_lr = 0.0005base_lr = 0.05lr_scheduler = mindspore.nn.cosine_decay_lr(min_lr,base_lr,batches_per_epoch*250,batches_per_epoch,decay_epoch=250)lr = Tensor(lr_scheduler[-1])optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.00004, loss_scale=1024)loss_scale_manager = ms.amp.FixedLossScaleManager(1024, drop_overflow_update=False)model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level="O3", loss_scale_manager=loss_scale_manager)callback = [TimeMonitor(), LossMonitor()]save_ckpt_path = "./"config_ckpt = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=5)ckpt_callback = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ckpt)callback += [ckpt_callback]print("============== Starting Training ==============")start_time = time.time()# 由于时间原因,epoch = 5,可根据需求进行调整model.train(5, dataset, callbacks=callback)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))print("total time:" + hour + "h " + minute + "m " + second + "s")print("============== Train Success ==============")if __name__ == '__main__':train()

模型评估

调用model.eval()接口对模型进行评估。

from mindspore import load_checkpoint, load_param_into_netdef test():mindspore.set_context(mode=mindspore.GRAPH_MODE, device_target="Ascend")dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "test")net = ShuffleNetV1(model_size="2.0x", n_class=10)param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")load_param_into_net(net, param_dict)net.set_train(False)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': Top1CategoricalAccuracy(),'Top_5_Acc': Top5CategoricalAccuracy()}model = Model(net, loss_fn=loss, metrics=eval_metrics)start_time = time.time()res = model.eval(dataset, dataset_sink_mode=False)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-5_390.ckpt" \+ "', time: " + hour + "h " + minute + "m " + second + "s"print(log)filename = './eval_log.txt'with open(filename, 'a') as file_object:file_object.write(log + '\n')if __name__ == '__main__':test()

模型预测

import mindspore
import matplotlib.pyplot as plt
import mindspore.dataset as dsnet = ShuffleNetV1(model_size="2.0x", n_class=10)
show_lst = []
param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
load_param_into_net(net, param_dict)
model = Model(net)
dataset_predict = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = dataset_show.batch(16)
show_images_lst = next(dataset_show.create_dict_iterator())["image"].asnumpy()
image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]
dataset_predict = dataset_predict.map(image_trans, 'image')
dataset_predict = dataset_predict.batch(16)
class_dict = {0:"airplane", 1:"automobile", 2:"bird", 3:"cat", 4:"deer", 5:"dog", 6:"frog", 7:"horse", 8:"ship", 9:"truck"}
# 推理效果展示(上方为预测的结果,下方为推理效果图片)
plt.figure(figsize=(16, 5))
predict_data = next(dataset_predict.create_dict_iterator())
output = model.predict(ms.Tensor(predict_data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
index = 0
for image in show_images_lst:plt.subplot(2, 8, index+1)plt.title('{}'.format(class_dict[pred[index]]))index += 1plt.imshow(image)plt.axis("off")
plt.show()

总结

这一节介绍了ShuffleNet的基本结构,为了在移动设备这样的有限资源上进行训练,ShuffleNet提出了Pointwise Group Convolution操作以大幅减少参数量,使用Channel Shuffle来确保网络的特征提取能力。通过在ResNet的Bottleneck结构中应用上面的两种操作,得到ShuffleNet的基本网络模块。

打卡

在这里插入图片描述

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • react获取访问过的路由历史记录
  • 强制升级最新系统,微软全面淘汰Win10和部分11用户
  • 香橙派AIpro部署YOLOv5:探索强悍开发板的高效目标检测能力
  • 一键优雅为Ubuntu20.04服务器挂载新磁盘
  • 产品经理-研发流程-敏捷开发-迭代-需求评审及产品规划(15)
  • Cesium--获取当前相机中心与地面的射线焦点
  • 处理线程安全的列表CopyOnWriteArrayList 和Collections.synchronizedList
  • Java中的输入输出
  • [misc]-流量包-wireshark-icmp
  • wifi信号处理的CRC8、CRC32
  • 【学习笔记】无人机(UAV)在3GPP系统中的增强支持(十三)-更换无人机控制器
  • uniapp引入 uview( HBuilder 和 npm 两种安装方式) #按需引入
  • Leetcode3202. 找出有效子序列的最大长度 II
  • 【高中数学/幂函数】比较a=2^0.3,b=3^0.2,c=7^0.1的大小
  • 【面试题】Golang 之Channel底层原理 (第三篇)
  • css的样式优先级
  • git 常用命令
  • Java IO学习笔记一
  • Map集合、散列表、红黑树介绍
  • node 版本过低
  • nodejs调试方法
  • SQLServer插入数据
  • 从PHP迁移至Golang - 基础篇
  • 可能是历史上最全的CC0版权可以免费商用的图片网站
  • 前端技术周刊 2019-01-14:客户端存储
  • 前端设计模式
  • 删除表内多余的重复数据
  • 提升用户体验的利器——使用Vue-Occupy实现占位效果
  • 小程序滚动组件,左边导航栏与右边内容联动效果实现
  • 一个JAVA程序员成长之路分享
  • mysql 慢查询分析工具:pt-query-digest 在mac 上的安装使用 ...
  • raise 与 raise ... from 的区别
  • shell使用lftp连接ftp和sftp,并可以指定私钥
  • 大数据全解:定义、价值及挑战
  • ​​快速排序(四)——挖坑法,前后指针法与非递归
  • ‌移动管家手机智能控制汽车系统
  • #LLM入门|Prompt#1.8_聊天机器人_Chatbot
  • #微信小程序(布局、渲染层基础知识)
  • #我与Java虚拟机的故事#连载06:收获颇多的经典之作
  • #我与Java虚拟机的故事#连载11: JVM学习之路
  • (1)Android开发优化---------UI优化
  • (二)WCF的Binding模型
  • (附源码)springboot家庭财务分析系统 毕业设计641323
  • (附源码)ssm失物招领系统 毕业设计 182317
  • (介绍与使用)物联网NodeMCUESP8266(ESP-12F)连接新版onenet mqtt协议实现上传数据(温湿度)和下发指令(控制LED灯)
  • (七)Activiti-modeler中文支持
  • (企业 / 公司项目)前端使用pingyin-pro将汉字转成拼音
  • (三)docker:Dockerfile构建容器运行jar包
  • (一)Docker基本介绍
  • (一)认识微服务
  • (转)shell中括号的特殊用法 linux if多条件判断
  • (转)利用PHP的debug_backtrace函数,实现PHP文件权限管理、动态加载 【反射】...
  • (转)自己动手搭建Nginx+memcache+xdebug+php运行环境绿色版 For windows版
  • .\OBJ\test1.axf: Error: L6230W: Ignoring --entry command. Cannot find argumen 'Reset_Handler'
  • .NET CLR Hosting 简介