当前位置: 首页 > news >正文

opencv—常用函数学习_“干货“_5

目录

十五、图像分割

简单阈值分割 (threshold)

自适应阈值分割 (adaptiveThreshold)

颜色范围分割 (inRange)

分水岭算法 (watershed)

泛洪填充 (floodFill)

GrabCut算法 (grabCut)

距离变换 (distanceTransform)

最大稳定极值区域检测 (MSER)

均值漂移滤波 (pyrMeanShiftFiltering)

十六、连通域

计算连通组件 (connectedComponents)

计算连通组件并返回统计信息 (connectedComponentsWithStats)

解释

http://t.csdnimg.cn/i8pqt —— opencv—常用函数学习_“干货“_总(VIP)

散的正在一部分一部分发,不需要VIP。

资料整理不易,有用话给个赞和收藏吧。


十五、图像分割

        在OpenCV中,图像分割是将图像分割成不同区域或对象的过程,常用于对象检测、识别和图像分析。下面介绍一些常用的图像分割函数及其使用示例。

图像分割函数
thresholdadaptiveThresholdinRangewatershedfloodFill
简单阈值分割自适应阈值分割颜色范围分割分水岭算法泛洪填充
grabCutdistanceTransformMSERpyrMeanShiftFiltering
GrabCut算法距离变换最大稳定极值区域检测均值漂移滤波
简单阈值分割 (threshold)
import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用简单阈值分割
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
自适应阈值分割 (adaptiveThreshold)
# 应用自适应阈值分割
adaptive_thresh = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)
cv2.imshow('Adaptive Threshold Image', adaptive_thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
颜色范围分割 (inRange)
# 读取彩色图像
color_image = cv2.imread('path_to_image.jpg')# 定义颜色范围
lower_bound = np.array([0, 120, 70])
upper_bound = np.array([10, 255, 255])# 转换到HSV颜色空间
hsv_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2HSV)# 应用颜色范围分割
mask = cv2.inRange(hsv_image, lower_bound, upper_bound)
cv2.imshow('Mask', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
分水岭算法 (watershed)
# 读取图像并转换为灰度图
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# 确定背景区域
kernel = np.ones((3, 3), np.uint8)
sure_bg = cv2.dilate(binary, kernel, iterations=3)# 确定前景区域
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)# 确定未知区域
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)# 标记连通组件
_, markers = cv2.connectedComponents(sure_fg)# 为确保背景为1,增加1
markers = markers + 1# 将未知区域标记为0
markers[unknown == 255] = 0# 应用分水岭算法
markers = cv2.watershed(color_image, markers)
color_image[markers == -1] = [0, 0, 255]cv2.imshow('Watershed', color_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
泛洪填充 (floodFill)
# 应用泛洪填充
flood_filled = color_image.copy()
h, w = flood_filled.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
cv2.floodFill(flood_filled, mask, (0, 0), (255, 0, 0))cv2.imshow('Flood Fill', flood_filled)
cv2.waitKey(0)
cv2.destroyAllWindows()
GrabCut算法 (grabCut)
# 初始化掩码
mask = np.zeros(color_image.shape[:2], np.uint8)# 定义矩形
rect = (50, 50, 450, 290)# 定义模型
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)# 应用GrabCut算法
cv2.grabCut(color_image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
grabcut_image = color_image * mask2[:, :, np.newaxis]cv2.imshow('GrabCut', grabcut_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
距离变换 (distanceTransform)
# 应用距离变换
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
cv2.imshow('Distance Transform', dist_transform)
cv2.waitKey(0)
cv2.destroyAllWindows()
最大稳定极值区域检测 (MSER)
# 创建MSER对象
mser = cv2.MSER_create()# 检测MSER区域
regions, _ = mser.detectRegions(gray)# 绘制检测到的区域
output = color_image.copy()
for p in regions:hull = cv2.convexHull(p.reshape(-1, 1, 2))cv2.polylines(output, [hull], 1, (0, 255, 0))cv2.imshow('MSER', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
均值漂移滤波 (pyrMeanShiftFiltering)
# 应用均值漂移滤波
mean_shift_image = cv2.pyrMeanShiftFiltering(color_image, 21, 51)
cv2.imshow('Mean Shift Filtering', mean_shift_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        这些示例展示了如何使用OpenCV中的各种图像分割函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的图像分割任务。

十六、连通域

        在OpenCV中,连通域分析是图像处理中的一个重要步骤,用于检测和标记图像中的连通区域。主要有两个函数:connectedComponentsconnectedComponentsWithStats。下面介绍这些函数及其使用示例。

连通域分析函数
connectedComponentsconnectedComponentsWithStats
计算连通组件计算连通组件并返回统计信息
计算连通组件 (connectedComponents)
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用阈值处理
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 计算连通组件
num_labels, labels = cv2.connectedComponents(binary_image)# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
计算连通组件并返回统计信息 (connectedComponentsWithStats)
# 计算连通组件及统计信息
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image)# 输出每个连通组件的统计信息
for i in range(num_labels):print(f"Component {i}:")print(f"  Bounding box: {stats[i, cv2.CC_STAT_LEFT]}, {stats[i, cv2.CC_STAT_TOP]}, "f"{stats[i, cv2.CC_STAT_WIDTH]}, {stats[i, cv2.CC_STAT_HEIGHT]}")print(f"  Area: {stats[i, cv2.CC_STAT_AREA]}")print(f"  Centroid: {centroids[i]}")# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components with Stats', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
解释
  • connectedComponents:此函数返回连通组件的数量和每个像素所属的标签。
  • connectedComponentsWithStats:此函数除了返回标签外,还返回每个连通组件的统计信息(如边界框、面积)和重心。

        这些示例展示了如何使用OpenCV中的连通域分析函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的连通域检测和分析任务。

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 解决 Yarn 运行时的 Node.js 版本问题:一个详尽的指南
  • Font Awesome 图表图标
  • vue3前端开发-执行npm run dev提示报错怎么解决
  • 如何防范场外个股期权的交易风险?
  • leetcode力扣_二分查找
  • Flutter 状态管理调研总结
  • 在mybatis-plus中关于@insert注解自定义批处理sql导致其雪花算法失效而无法自动生成id的解决方法
  • How to integrate GPT-4 model hosted on Azure with the gptstudio package
  • Qt日志库QsLog使用教程
  • MySQL(8)事务
  • 网络安全——防御课实验二
  • Chatgpt和GLM api的使用
  • 【iOS】类对象的结构分析
  • 沙尘传输模拟教程(基于wrf-chem)
  • 【算法/天梯赛训练】天梯赛模拟题集
  • 【React系列】如何构建React应用程序
  • 【面试系列】之二:关于js原型
  • Angular Elements 及其运作原理
  • Angular数据绑定机制
  • const let
  • Electron入门介绍
  • ERLANG 网工修炼笔记 ---- UDP
  • es6要点
  • ES学习笔记(10)--ES6中的函数和数组补漏
  • express.js的介绍及使用
  • JavaScript创建对象的四种方式
  • Java精华积累:初学者都应该搞懂的问题
  • JSONP原理
  • js算法-归并排序(merge_sort)
  • Koa2 之文件上传下载
  • magento 货币换算
  • Promise面试题,控制异步流程
  • PyCharm搭建GO开发环境(GO语言学习第1课)
  • SegmentFault 社区上线小程序开发频道,助力小程序开发者生态
  • Spring核心 Bean的高级装配
  • 使用API自动生成工具优化前端工作流
  • 使用iElevator.js模拟segmentfault的文章标题导航
  • 为物联网而生:高性能时间序列数据库HiTSDB商业化首发!
  • 源码之下无秘密 ── 做最好的 Netty 源码分析教程
  • Android开发者必备:推荐一款助力开发的开源APP
  • ​软考-高级-信息系统项目管理师教程 第四版【第19章-配置与变更管理-思维导图】​
  • ‌U盘闪一下就没了?‌如何有效恢复数据
  • # 数论-逆元
  • #我与Java虚拟机的故事#连载18:JAVA成长之路
  • (C语言)深入理解指针2之野指针与传值与传址与assert断言
  • (Repost) Getting Genode with TrustZone on the i.MX
  • (附源码)springboot优课在线教学系统 毕业设计 081251
  • (六)c52学习之旅-独立按键
  • (四)opengl函数加载和错误处理
  • (算法)Game
  • (一)spring cloud微服务分布式云架构 - Spring Cloud简介
  • (源码版)2024美国大学生数学建模E题财产保险的可持续模型详解思路+具体代码季节性时序预测SARIMA天气预测建模
  • .cn根服务器被攻击之后
  • .NET Framework 服务实现监控可观测性最佳实践
  • .net refrector