当前位置: 首页 > news >正文

Python爬虫技术 第24节 数据清洗和预处理(二)

在Python爬虫项目中,数据清洗和预处理是非常关键的步骤。这部分工作通常涉及到字符串操作、缺失值处理和数据格式转换等方面。下面我将详细讲解这些方面的内容,并提供具体的代码示例。

1. 字符串操作

字符串操作在数据清洗过程中非常重要,因为网页内容通常包含大量的文本数据。常见的字符串操作包括去除空白字符、大小写转换、去除特殊字符等。

示例代码:
# 去除空白字符
def remove_whitespace(text):return text.strip()# 大小写转换
def to_lowercase(text):return text.lower()# 去除特殊字符
import re
def remove_special_chars(text):return re.sub(r'[^a-zA-Z0-9\s]', '', text)# 示例使用
text = " Hello, World! "
cleaned_text = remove_whitespace(text)
cleaned_text = to_lowercase(cleaned_text)
cleaned_text = remove_special_chars(cleaned_text)
print(cleaned_text)  # 输出: hello world

2. 缺失值处理

在爬取数据时,有时会遇到缺失值的情况。缺失值可能出现在任何数据类型中,包括字符串、数字等。处理缺失值的方法通常包括删除含有缺失值的记录、填充缺失值等。

示例代码:
import pandas as pd# 创建一个包含缺失值的DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, None, 30],'Email': ['alice@example.com', 'bob@example.com', None]
}
df = pd.DataFrame(data)# 删除含有缺失值的行
df_cleaned = df.dropna()# 使用特定值填充缺失值
df_filled = df.fillna(value='Unknown')# 使用前一个有效值填充缺失值
df_forward_filled = df.fillna(method='ffill')# 使用后一个有效值填充缺失值
df_backward_filled = df.fillna(method='bfill')# 使用统计方法(如均值)填充数值型列的缺失值
mean_age = df['Age'].mean()
df['Age'] = df['Age'].fillna(mean_age)# 显示结果
print(df_cleaned)
print(df_filled)
print(df_forward_filled)
print(df_backward_filled)

3. 数据格式转换

数据格式转换是指将数据从一种格式转换为另一种格式,这在处理日期、货币等数据时非常常见。Python 中有许多内置函数和第三方库可以帮助完成这项工作。

示例代码:
# 转换日期格式
from datetime import datetimedate_str = '2024-07-30'
date_obj = datetime.strptime(date_str, '%Y-%m-%d')
formatted_date = date_obj.strftime('%d/%m/%Y')
print(formatted_date)  # 输出: 30/07/2024# 货币格式转换
price_str = '$1,234.56'
price_float = float(price_str.replace('$', '').replace(',', ''))
print(price_float)  # 输出: 1234.56

总结

以上就是关于数据清洗和预处理中字符串操作、缺失值处理和数据格式转换的详细讲解及示例代码。在实际项目中,你可能需要根据具体情况调整这些步骤,以适应不同的数据来源和需求。

如果你有任何具体问题或需要进一步的帮助,请随时告诉我!

我们可以深入到一些更具体的细节,比如处理日期时间、正则表达式匹配、以及更复杂的缺失值处理策略等。接下来,我将给出一些额外的示例代码来展示这些操作。

1. 处理日期时间

在处理日期时间数据时,通常需要将它们转换为统一的格式,以便进行比较或计算。Python 中的 datetime 模块提供了强大的日期时间处理能力。

示例代码:
from datetime import datetime# 假设我们从网页中提取了日期字符串
date_strs = ['2024-07-30', '2024-08-01', '2024-08-02']# 将日期字符串转换为 datetime 对象
dates = [datetime.strptime(date, '%Y-%m-%d') for date in date_strs]# 将 datetime 对象转换回字符串,但格式不同
formatted_dates = [date.strftime('%d/%m/%Y') for date in dates]# 打印转换后的日期
print(formatted_dates)  # 输出: ['30/07/2024', '01/08/2024', '02/08/2024']

2. 正则表达式匹配

正则表达式是用于文本模式匹配的强大工具。在数据清洗中,正则表达式可以用来提取特定格式的数据或去除不需要的部分。

示例代码:
import re# 假设我们有一段从网页中提取的文本
text = "The price is $1,234.56 and the date is 2024-07-30."# 提取价格
price_pattern = r'\$\d{1,3}(?:,\d{3})*\.\d{2}'
price_match = re.search(price_pattern, text)
price = price_match.group().replace('$', '').replace(',', '')# 提取日期
date_pattern = r'\d{4}-\d{2}-\d{2}'
date_match = re.search(date_pattern, text)
date = date_match.group()# 打印结果
print(price)  # 输出: 1234.56
print(date)  # 输出: 2024-07-30

3. 复杂的缺失值处理

除了简单的填充缺失值之外,还可以使用更复杂的方法来处理缺失数据,例如基于其他变量的预测填充、使用机器学习模型预测缺失值等。

示例代码:
import pandas as pd
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler# 创建一个包含缺失值的DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, None, 30],'Email': ['alice@example.com', 'bob@example.com', None]
}
df = pd.DataFrame(data)# 使用中位数填充年龄列的缺失值
imputer = SimpleImputer(strategy='median')
age_imputed = imputer.fit_transform(df[['Age']])
df['Age'] = age_imputed# 使用众数填充电子邮件列的缺失值
email_imputer = SimpleImputer(strategy='most_frequent')
email_imputed = email_imputer.fit_transform(df[['Email']])
df['Email'] = email_imputed# 显示结果
print(df)

4. 综合示例

现在,让我们将上述所有的示例整合起来,创建一个更全面的数据清洗和预处理脚本。

示例代码:
import re
import pandas as pd
from datetime import datetime
from sklearn.impute import SimpleImputer# 定义数据清洗函数
def clean_data(df):# 去除字符串两端的空白字符df['Name'] = df['Name'].str.strip()# 转换年龄列的格式df['Age'] = df['Age'].astype(str).str.replace(',', '').astype(float)# 处理日期df['Date'] = df['Date'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d').strftime('%d/%m/%Y'))# 使用正则表达式提取价格df['Price'] = df['Price'].apply(lambda x: re.search(r'\$\d{1,3}(?:,\d{3})*\.\d{2}', x).group())df['Price'] = df['Price'].str.replace('$', '').str.replace(',', '')# 使用中位数填充年龄列的缺失值imputer = SimpleImputer(strategy='median')df['Age'] = imputer.fit_transform(df[['Age']])# 使用众数填充电子邮件列的缺失值email_imputer = SimpleImputer(strategy='most_frequent')df['Email'] = email_imputer.fit_transform(df[['Email']])return df# 创建一个包含各种数据类型的DataFrame
data = {'Name': [' Alice ', 'Bob', 'Charlie'],'Age': ['25', None, 30],'Email': ['alice@example.com', 'bob@example.com', None],'Date': ['2024-07-30', '2024-08-01', '2024-08-02'],'Price': ['$1,234.56', 'The price is $1,234.56', 'Price: $1,234.56']
}
df = pd.DataFrame(data)# 清洗数据
df_cleaned = clean_data(df)# 显示结果
print(df_cleaned)

这个综合示例包含了从数据清洗到预处理的多种操作,包括字符串操作、缺失值处理、数据格式转换等。您可以根据自己的具体需求调整这些步骤。如果有任何疑问或需要进一步的帮助,请随时提问!

当然可以!既然您希望继续讨论数据清洗和预处理的话题,我们可以进一步探讨一些高级的主题,例如使用正则表达式进行更复杂的文本清洗、使用Pandas进行高级的数据处理操作,以及使用更高级的缺失值处理方法。

4. 使用正则表达式进行更复杂的文本清洗

正则表达式是一种非常强大的工具,可以用来进行复杂的文本匹配和替换。我们可以利用它来处理更复杂的文本清洗任务。

示例代码:
import re# 假设我们从网页中提取了一些文本数据
text = """
John Doe, 25 years old, lives at 123 Main St.
Jane Smith, 32 years old, lives at 456 Elm St.
"""# 使用正则表达式提取姓名和年龄
pattern = r'(\w+\s\w+), (\d+) years old'
matches = re.findall(pattern, text)# 将匹配结果转换为字典
result = [{'Name': name, 'Age': int(age)} for name, age in matches]# 打印结果
print(result)
# 输出: [{'Name': 'John Doe', 'Age': 25}, {'Name': 'Jane Smith', 'Age': 32}]

5. 使用Pandas进行高级的数据处理操作

Pandas 是一个非常强大的数据处理库,可以方便地处理数据框 (DataFrame) 和序列 (Series)。这里有一些使用 Pandas 进行数据清洗和预处理的高级示例。

示例代码:
import pandas as pd# 创建一个包含混合数据类型的 DataFrame
data = {'Name': ['John Doe', 'Jane Smith', 'None', ''],'Age': [25, 32, None, 28],'Email': ['john@example.com', 'jane@example.com', None, '']
}
df = pd.DataFrame(data)# 使用 Pandas 的函数进行数据清洗和预处理
# 替换空字符串为 NaN
df = df.replace('', pd.NA)# 使用 fillna() 方法处理缺失值
# 使用 'Unknown' 填充 Name 列的缺失值
df['Name'] = df['Name'].fillna('Unknown')# 使用 Age 列的平均值填充 Age 列的缺失值
df['Age'] = df['Age'].fillna(df['Age'].mean())# 使用 Email 列的众数填充 Email 列的缺失值
df['Email'] = df['Email'].fillna(df['Email'].mode()[0])# 打印处理后的 DataFrame
print(df)

6. 使用更高级的缺失值处理方法

在处理缺失值时,除了简单的填充或删除外,还可以使用更高级的方法,例如基于其他变量的预测填充、使用机器学习模型预测缺失值等。

示例代码:
import pandas as pd
from sklearn.impute import KNNImputer# 创建一个包含缺失值的 DataFrame
data = {'Name': ['John Doe', 'Jane Smith', 'None', ''],'Age': [25, 32, None, 28],'Email': ['john@example.com', 'jane@example.com', None, '']
}
df = pd.DataFrame(data)# 使用 KNNImputer 基于其他特征预测 Age 列的缺失值
imputer = KNNImputer(n_neighbors=2)
df['Age'] = imputer.fit_transform(df[['Age']])# 使用 Email 列的众数填充 Email 列的缺失值
df['Email'] = df['Email'].fillna(df['Email'].mode()[0])# 打印处理后的 DataFrame
print(df)

7. 结合所有操作

最后,我们可以将前面的所有操作整合到一个完整的脚本中,以便更系统地处理数据。

示例代码:
import re
import pandas as pd
from sklearn.impute import KNNImputer# 定义数据清洗函数
def clean_data(df):# 使用正则表达式清洗姓名df['Name'] = df['Name'].apply(lambda x: re.sub(r'\s+', ' ', x).strip())# 使用 KNNImputer 基于其他特征预测 Age 列的缺失值imputer = KNNImputer(n_neighbors=2)df['Age'] = imputer.fit_transform(df[['Age']])# 使用 Email 列的众数填充 Email 列的缺失值df['Email'] = df['Email'].fillna(df['Email'].mode()[0])return df# 创建一个包含各种数据类型的 DataFrame
data = {'Name': [' John Doe ', 'Jane Smith', 'None', ''],'Age': [25, 32, None, 28],'Email': ['john@example.com', 'jane@example.com', None, '']
}
df = pd.DataFrame(data)# 清洗数据
df_cleaned = clean_data(df)# 显示结果
print(df_cleaned)

这些示例涵盖了使用正则表达式进行复杂的文本清洗、使用 Pandas 进行高级的数据处理操作,以及使用更高级的缺失值处理方法。这些技巧可以帮助您更有效地清洗和预处理数据。如果您有更具体的需求或问题,请随时提出!

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 前端表格控件:打造自动化报表的高效工具
  • 国家超算互联网平台:模型服务体验与本地部署推理实践
  • 02 Golang面向对象编程_20240727 课程笔记
  • Day10--mybatis多表连接查询学习(一对一、一对多、多对多)
  • Mongodb文档和数组的通配符索引
  • JAVA小白学习日记Day10
  • maven引入了jar包但在class文件里找不到jar包里的类
  • windows上启动Kafka
  • 暑期C++ 缺省参数
  • 视觉-语言大模型应用
  • 大厂面经:大疆嵌入式面试题及参考答案(4万字长文:持续更新)
  • 20240730 每日AI必读资讯
  • 使用easypoi读取Excel模板
  • JAVA8中的Stream API是什么及其用法
  • 数据结构(二叉树-2)
  • 【每日笔记】【Go学习笔记】2019-01-10 codis proxy处理流程
  • 〔开发系列〕一次关于小程序开发的深度总结
  • Android单元测试 - 几个重要问题
  • angular2开源库收集
  • Asm.js的简单介绍
  • ECMAScript6(0):ES6简明参考手册
  • flask接收请求并推入栈
  • HTTP那些事
  • java取消线程实例
  • LeetCode刷题——29. Divide Two Integers(Part 1靠自己)
  • OpenStack安装流程(juno版)- 添加网络服务(neutron)- controller节点
  • php中curl和soap方式请求服务超时问题
  • React Transition Group -- Transition 组件
  • ReactNative开发常用的三方模块
  • Three.js 再探 - 写一个跳一跳极简版游戏
  • 百度地图API标注+时间轴组件
  • 可能是历史上最全的CC0版权可以免费商用的图片网站
  • 如何进阶一名有竞争力的程序员?
  • 实现菜单下拉伸展折叠效果demo
  • 如何用纯 CSS 创作一个货车 loader
  • ​ 全球云科技基础设施:亚马逊云科技的海外服务器网络如何演进
  • (13)[Xamarin.Android] 不同分辨率下的图片使用概论
  • (6)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—使用Adaboost建模及工作环境下的数据分析整理
  • (day6) 319. 灯泡开关
  • (delphi11最新学习资料) Object Pascal 学习笔记---第13章第1节 (全局数据、栈和堆)
  • (html转换)StringEscapeUtils类的转义与反转义方法
  • (js)循环条件满足时终止循环
  • (Oracle)SQL优化基础(三):看懂执行计划顺序
  • (二)什么是Vite——Vite 和 Webpack 区别(冷启动)
  • (附源码)spring boot北京冬奥会志愿者报名系统 毕业设计 150947
  • (附源码)springboot社区居家养老互助服务管理平台 毕业设计 062027
  • (十七)Flink 容错机制
  • (四)linux文件内容查看
  • (一)spring cloud微服务分布式云架构 - Spring Cloud简介
  • (原创)boost.property_tree解析xml的帮助类以及中文解析问题的解决
  • (转)Scala的“=”符号简介
  • (最新)华为 2024 届秋招-硬件技术工程师-单板硬件开发—机试题—(共12套)(每套四十题)
  • **CI中自动类加载的用法总结
  • ... 是什么 ?... 有什么用处?
  • .[hudsonL@cock.li].mkp勒索病毒数据怎么处理|数据解密恢复