当前位置: 首页 > news >正文

[论文精读]Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis

论文原文:3504035.3504050 (acm.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related work

2.4. Preliminaries

2.5. Methodology

2.5.1. Problem definition

2.5.2. M2E approach

2.5.3. Optimization framework

2.6. Experiments and evaluation

2.6.1. Data collection and preprocessing

2.6.2. Baselines and metrics

2.6.3. Clustering results

2.6.4. Parameter sensitivity analysis

2.6.5. Factor analysis

2.7. Conclusion

3. 知识补充

3.1. 偏对称张量

4. Reference


1. 省流版

1.1. 心得

(1)这个好像不是深度学习捏~

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①They proposed a Multi-view Multigraph Embedding (M2E) to get information from different views

2.2. Introduction

        ①The conceptual view of M2E:

2.3. Related work

        ①Introducing graph embedding methods

        ②Compared with multi-view clustering and multi-view embedding

2.4. Preliminaries

        ①Notations:

        ②Definition 1: introducing partial symmetric tensor(不过我觉得作者没有解释地很清楚,他说“如果一个M阶张量在模态1到M上偏对称,那么它就是秩一偏对称张量”。不如看看我的知识补充)

        ③Definition 2: matricize tensor \mathcal{X}\in\mathbb{R}^{I_{1}\times\cdots\times I_{M}} to \mathbf{X}_{(m)}\in \mathbb{R}^{I_m\times J}, where 

\begin{aligned}&j=1+\sum_{p=1,p\neq m}^{M}(i_{p}-1)J_{p}, with\\&J_{p}=\begin{cases}1,&if p=1 or (p=2 and m=1)\\\Pi_{q=1,q\neq m}^{p-1}I_q,&otherwise.\end{cases}\end{aligned}

        ④Definition 3: factorize \mathcal{X}\in\mathbb{R}^{I_{1}\times\cdots\times I_{M}} to:

\mathcal{X}\approx\sum_{r=1}^R\mathbf{x}_r^{(1)}\circ\cdots\circ\mathbf{x}_r^{(M)}\equiv[[\mathbf{X}^{(1)},...,\mathbf{X}^{(M)}]]

which needs to minimize the estimation error:

\mathcal{L}=\min_{\mathbf{X}^{(1)},\cdots,\mathbf{X}^{(M)}}\lVert\mathcal{X}-[[\mathbf{X}^{(1)},\cdots,\mathbf{X}^{(M)}]]\rVert_F^2

and, to solve non convex optimization problems:

\mathbf{X}^{(k)}\leftarrow\arg\min_{\mathbf{X}^{(k)}}\|\mathbf{X}_{(k)}-\mathbf{X}^{(k)}(\odot_{i\neq k}^n\mathbf{X}^{(i)})^\mathrm{T}\|_F^2

where \odot_{i\neq k}^{M}\mathbf{X}^{(i)}=\mathbf{X}^{(M)}\odot\cdots\mathbf{X}^{(k-1)}\odot\mathbf{X}^{(k+1)}\cdots\odot\mathbf{X}^{(1)}

2.5. Methodology

2.5.1. Problem definition

        ①For N samples with V views, they have brain connectivity \mathbf{W}\in\mathbb{R}^{M\times M} each with M nodes

        ②For each view, the whole graph set is \mathcal{D}^{(v)}=\{\mathbf{W}_{1}^{(v)},\mathbf{W}_{2}^{(v)},\cdots,\mathbf{W}_{N}^{(v)}\}

        ③All the views: \mathcal{D} = \{\mathcal{D}^{(1)},\mathcal{D}^{(2)},\cdots,\mathcal{D}^{(V)}\}

        ④To learn an embedding \mathbf{F}^*\in\mathbb{R}^{N\times R} for each participant 

2.5.2. M2E approach

        ①Concatenated third-order tensor: 

\mathcal{X}^{(v)}=[\mathbf{W}_1^{(v)},\mathbf{W}_2^{(v)},\cdots,\mathbf{W}_N^{(v)}]\in \mathbb{R}^{M\times M\times N},v \in [1 : V]

        ②Embedding function:

\min_{\mathbf{H}^{(v)},\mathbf{F}^{(v)}}\sum_{v=1}^V||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{H}^{(v)},\mathbf{F}^{(v)}]]||_F^2

where \mathbf{H}^{(v)}\in\mathbb{R}^{M\times R} and \mathbf{F}^{(v)}\in\mathbb{R}^{N\times R} calculated by CP factorization:

        ③Common embedding learning:

\min_{\mathbf{F}^*}\sum_{v=1}^V\lambda_v||\mathbf{F}^{(v)}-\mathbf{F}^*||_F^2

        ④Combining them to optimize M2E:

\begin{aligned}\mathcal{O}&=\min_{\mathbf{H}^{(v)},\mathbf{F}^{*},\mathbf{F}^{(v)}}\sum_{v=1}^{V}||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{H}^{(v)},\mathbf{F}^{(v)}]]||_{F}^{2}\\&+\sum_{v=1}^{V}\lambda_{v}||\mathbf{F}^{(v)}-\mathbf{F}^{*}||_{F}^{2}\end{aligned}

where the first term is for minimize the dependence of multi-graphs and the second is for multi-views

2.5.3. Optimization framework

        ①Parameter needs estimate: \mathbf{H}^{(v)}\in\mathbb{R}^{M\times R}\mathbf{F }^{(v)}\in\mathbb{R}^{N\times R}, and \mathbf{F}^{*}\in\mathbb{R}^{N\times R}. Due to they are not convex, no closed-form adopted. Then they introduced an iteration method, Alternating Direction Method of Multipliers (ADMM) approach.

        ②They use variable substitution technique, fixing \mathbf{F }^{(v)} and \mathbf{F}^{*}, compute \mathbf{H}^{(v)}:

\begin{aligned}&\min_{\mathbf{H}^{(v)},\mathbf{P}^{(v)}}||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{P}^{(v)},\mathbf{F}^{(v)}]]||_{F}^{2}\\&s.t. \mathbf{H}^{(v)}= \mathbf{P}^{(v)}\end{aligned}

the Lagragian function:

\mathcal{L}(\mathbf{H}^{(v)},\mathbf{P}^{(v)})=\|\mathcal{X}^{(v)}-[\mathbf{H}^{(v)},\mathbf{P}^{(v)},\mathbf{F}^{(v)}]\|_{F}^{2}\\+tr(\mathbf{U}^{(v)T}(\mathbf{H}^{(v)}-\mathbf{P}^{(v)}))+\frac{\mu}{2}\|\mathbf{H}^{(v)}-\mathbf{P}^{(v)}\|_{F}^{2}

where \mathbf{U}^{(v)}\in\mathbb{R}^{M\times R} denotes Lagrange multipliers, \mu denotes penalty parameter. Optimization problem:

\min_{\mathbf{H}^{(v)}}||\mathbf{X}_{(1)}^{(v)}-\mathbf{H}^{(v)}\mathbf{D}^{(v)\text{T}}||_F^2+\frac{\mu}{2}||\mathbf{H}^{(v)}-\mathbf{P}^{(v)}+\frac{1}{\mu}\mathbf{U}^{(v)}||_F^2

they transfer \mathcal{X}^{(v)} to \mathbf{X}_{(1)}^{(v)}\in\mathbb{R}^{M\times(MN)}, and define \mathbf{D}^{(v)}=\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)}\in\mathbb{R}^{(NM)\times R}

. Further changing the minimizing function:

\min_{\mathbf{H}^{(v)}}tr(\mathbf{H}^{(v)}\mathbf{A}^{(v)}\mathbf{H}^{(v)^{\mathrm{T}}})-tr(\mathbf{B}^{(v)^{\mathrm{T}}}\mathbf{H}^{(v)})

where \mathbf{A}^{(v)}=\mathbf{D}^{(v)^{\mathrm{T}}}\mathbf{D}^{(v)}+\frac{\mu}{2}\mathbf{I} and \mathbf{B}^{(v)}=2\mathbf{X}_{(1)}^{(v)}\mathbf{D}^{(v)}+\mu\mathbf{P}^{(v)}-\mathbf{U}^{(v)}. Solving it by update \mathbf{H}^{(v)}

\mathbf{H}_{t+1}^{(v)}\leftarrow\mathbf{H}_t^{(v)}-\frac1{L^{(v)}}(2\mathbf{H}^{(v)^\mathrm{T}}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where L^{(v)} denotes Lipschitz coefficient and equals to the maximum eigenvalue of 2\mathbf{A}^{(v)}. They applied Khatri-Rao product to calculate \mathbf{D}^{(v)^\mathrm{T}}\mathbf{D}^{(v)}:

\begin{aligned} \mathbf{D}^{(v)^{\mathrm{T}}}\mathbf{D}^{(v)}& =(\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)^{\mathrm{T}}})(\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)}) \\ &=(\mathbf{F}^{(v)^{\mathrm{T}}}\mathbf{F}^{(v)})*(\mathbf{P}^{(v)^{\mathrm{T}}}\mathbf{P}^{(v)}) \end{aligned}

where \ast denotes Hadamard product. The updating function of \mathrm{P}^{(v)}:

\mathbf{P}_{t+1}^{(v)}\leftarrow\mathbf{P}_t^{(v)}-\frac1{L^{(v)}}(2\mathbf{P}_t^{(v)}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where \mathbf{A}^{(v)}=\mathbf{E}^{(v)^{\mathrm{T}}}\mathbf{E}^{(v)}+\frac\mu2(\mathbf{I})\mathbf{B}^{(v)}=2\mathbf{X}_{(2)}^{(v)}\mathbf{E}^{(v)}+\mu\mathbf{H}^{(v)}+\mathbf{U}^{(v)}\mathbf{E}^{(v)}=\mathbf{F}^{(v)}\odot\mathbf{H}^{(v)}\in\mathbb{R}^{(NM)\times R}. Lastly update \mathrm{U}(v):

\mathbf{U}_t^{(v)}\leftarrow\mathbf{U}_t^{(v)}+\mu(\mathbf{H}^{(v)}-\mathbf{P}^{(v)})

        ③Then they fix \mathbf{F}^{*} and \mathbf{H}^{(v)} to compute \mathbf{F }^{(v)} by minimize:

\min_{\mathbf{F}^{(v)}} ||\mathbf{X}_{(3)}^{(v)}-\mathbf{F}^{(v)}\mathbf{J}^{(v)^{\mathrm{T}}}||_{F}^{2}+\lambda_{(v)}||\mathbf{F}^{(v)}-\mathbf{F}^{*}||_{F}^{2}

where \mathbf{J}^{(v)}=\mathbf{P}^{(v)}\odot\mathbf{H}^{(v)}\in\mathbb{R}^{(MM)\times R}. The updating function of \mathbf{F }^{(v)}:

\mathbf{F}_{t+1}^{(v)}\leftarrow\mathbf{F}_t^{(v)}-\frac{1}{L^{(v)}}(2\mathbf{F}_t^{(v)}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where \mathbf{A}^{(v)} = \mathbf{J}^{(v)^\mathrm{T}}\mathbf{J}^{(v)} + \lambda_{(v)}(\mathbf{I})\mathbf{B}^{v} = 2\mathbf{X}_{(3)}^{(v)}\mathbf{J}^{(v)} +2\lambda_{(v)}\mathbf{F}^*

        ④Finally, they fix \mathbf{H}^{(v)} and \mathbf{F }^{(v)} to minimize {\mathcal{O}} over \mathbf{F}^{*}:

\mathbf{F}^*=\frac{\sum_{v=1}^V\lambda_{(v)}\mathbf{F}^{(v)}}{\sum_{v=1}^V\lambda_{(v)}}

        ⑤Overall time complexity: 

O(MaxIter(R^{3}+R^{2}(2M+N+1)+(M^{2}N+M+NV)R)V)

2.6. Experiments and evaluation

2.6.1. Data collection and preprocessing

(1)Human Immunodeficiency Virus Infection (HIV)

        ①Sample: randomly select 35 patients and 35 controls from dataset due to the data imbalance

        ②Atlas: AAL 90

(2)Bipolar Disorder (BP)

        ①Sample: 52 BP and 45 controls

        ②Atlas: self-generated 82 regions

euthymia  n. 情感正常

2.6.2. Baselines and metrics

        ①Introducing compared models

        ②Grid search for hyper-parameters: \lambda _1,\lambda _2\in\{10^{-4},10^{-2},...,10^{4}\}R form \{1,2,...,20\}

2.6.3. Clustering results

        ①Performance comparison table:

2.6.4. Parameter sensitivity analysis

        ①Ablation on \lambda:

        ②Ablation on R:

2.6.5. Factor analysis

        ①The activity intensity of the brain region and the embedded feature \mathbf{F }^{(v)}:

2.7. Conclusion

        They design a novel multi-view multi-graph embedding framework based on partially-symmetric tensor factorization

3. 知识补充

3.1. 偏对称张量

(1)定义:偏对称张量是指张量中的某些分量在特定的下标重排后,其值保持不变。这种性质与张量的对称性有关,但与完全对称的张量(即所有下标重排后元素都相等的张量)不同,偏对称张量只要求部分下标重排后元素相等。

(2)示例:以三阶张量为例,如果满足以下条件之一或多个,则可以称为偏对称张量:

        ①x_{ijk}=x_{jik}(第一个和第二个下标互换)

        ②x_{ijk}=x_{kji}(第一个和第三个下标互换)

        ③x_{ijk}=x_{jik}=x_{kij}(同时满足前两个条件)

4. Reference

Liu, Y. et al. (2018) 'Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis', AAAI. doi: https://doi.org/10.48550/arXiv.1806.07703

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • File 34
  • 程序员离领导岗位还差什么
  • QPS(Queries Per Second)和TPS(Transactions Per Second)
  • 功能安全实战系列01-FlsTst(Flash Test)开发介绍
  • 【2.2 python中的变量】
  • linux运维一天一个shell命令之iostat详解
  • 陈文自媒体:AI写体育原创文案,效率提升10倍,收益飞起来!
  • vim列编辑模式
  • ARM 架构与技术综述
  • 模型表达方式
  • fastadmin插件市场暂不可用,是否切换到本地插件
  • 【Vue】全局组件和局部组件
  • 四大内存区域揭秘:你真的了解你的程序吗?
  • 用VBA在Word文档中快速查找到黄色底纹内容
  • JAVA项目基于SSM的教师管理系统
  • [分享]iOS开发 - 实现UITableView Plain SectionView和table不停留一起滑动
  • angular2 简述
  • Apache Zeppelin在Apache Trafodion上的可视化
  • CSS魔法堂:Absolute Positioning就这个样
  • HTTP--网络协议分层,http历史(二)
  • js操作时间(持续更新)
  • Laravel 实践之路: 数据库迁移与数据填充
  • mongo索引构建
  • select2 取值 遍历 设置默认值
  • 第2章 网络文档
  • 力扣(LeetCode)357
  • 聊聊hikari连接池的leakDetectionThreshold
  • 聊聊sentinel的DegradeSlot
  • 小程序、APP Store 需要的 SSL 证书是个什么东西?
  • 移动互联网+智能运营体系搭建=你家有金矿啊!
  • 智能网联汽车信息安全
  • 2017年360最后一道编程题
  • FaaS 的简单实践
  • 我们雇佣了一只大猴子...
  • ​你们这样子,耽误我的工作进度怎么办?
  • # Panda3d 碰撞检测系统介绍
  • #define与typedef区别
  • #前后端分离# 头条发布系统
  • #中国IT界的第一本漂流日记 传递IT正能量# 【分享得“IT漂友”勋章】
  • (C#)if (this == null)?你在逗我,this 怎么可能为 null!用 IL 编译和反编译看穿一切
  • (Repost) Getting Genode with TrustZone on the i.MX
  • (代码示例)使用setTimeout来延迟加载JS脚本文件
  • (分布式缓存)Redis哨兵
  • (附源码)ssm本科教学合格评估管理系统 毕业设计 180916
  • (附源码)小程序儿童艺术培训机构教育管理小程序 毕业设计 201740
  • (九十四)函数和二维数组
  • (理论篇)httpmoudle和httphandler一览
  • (顺序)容器的好伴侣 --- 容器适配器
  • (四)搭建容器云管理平台笔记—安装ETCD(不使用证书)
  • (转)c++ std::pair 与 std::make
  • (转)德国人的记事本
  • (转)甲方乙方——赵民谈找工作
  • . Flume面试题
  • .bat文件调用java类的main方法
  • .NET 6 在已知拓扑路径的情况下使用 Dijkstra,A*算法搜索最短路径