当前位置: 首页 > news >正文

Compose知识分享

前言

“Jetpack Compose 是一个适用于 Android 的新式声明性界面工具包。Compose 提供声明性 API,让您可在不以命令方式改变前端视图的情况下呈现应用界面,从而使编写和维护应用界面变得更加容易。” 

以上是Compose官网中对于Compose这套全新的Android UI库的介绍,Compose的到来为Android引入了声明式、响应式的全新开发方式,直接以函数调用的形式使用组件,取代了原先冗长的Activity定义以及.xml文件编写;这一点也是当前TDF团队Kuikly框架同样所具备的能力,给予声明式、响应式的特性加速用户开发,并且Kuikly直接复用了Android的view体系,与Compose以全新的Composable以及Compose树而言,一定程度上可以加速新用户对于底层的理解。​​​​​​​

Compose执行生命周期

我们继续Compose,Compose在声明式函数的基础上,引入了重组的能力,结合后续的度量策略,Compose UI在发生变化时,会被系统的快照系统SnapManager监测到,并使用协程管道的方式获取信息,然后执行重组动作,重组动作会对状态变更的UI元素进行重新渲染,而不修改状态未改变的其余UI元素。

Compose程序的执行之后,一直到页面渲染出结果以及后续的持续UI变更,共可以分为4个阶段,分别是“组合 --> 布局  --> 渲染 <--> 重组”;

组合阶段

“在组合阶段,Compose 运行时会执行可组合函数,并 输出一个表示界面的树结构。这个界面树由 包含下一阶段所需的所有信息的布局节点”(官方文档)

因此我们不难理解,Compose仍然是采用了树型结构作为UI加载、布局、渲染的底层结构,但是有所变更的是如今的Compose树的节点类型为ComposeUiNode,在组件树真正开始被载入时会变成LayoutNode类型的节点。LayoutNode是ComposeUiNode的子类,其继承了ComposeUiNode中所有组件设置的属性。对应的Row、Image、Column以及Text组件所形成的LayoutNode树显示如下:

因此我们可以明确了第一点,即组合阶段就是产生所有组件的LayoutNode树,为后续布局阶段提供遍历的内容。

结合源码我们梳理了组合阶段的执行流程,显示如下:

相关源码展示如下,setContent中内部的函数调用在此不做展示;可以结合流程图去检索源码即可了解其中的调用链。

private object TutorialSnippet1 {class MainActivity : AppCompatActivity() {override fun onCreate(savedInstanceState: Bundle?) {super.onCreate(savedInstanceState)setContent {Text("Hello world!")}}}}public fun ComponentActivity.setContent(parent: CompositionContext? = null,content: @Composable () -> Unit) {val existingComposeView = window.decorView.findViewById<ViewGroup>(android.R.id.content).getChildAt(0) as? ComposeViewif (existingComposeView != null) with(existingComposeView) {setParentCompositionContext(parent)setContent(content)} else ComposeView(this).apply {// Set content and parent **before** setContentView// to have ComposeView create the composition on attachsetParentCompositionContext(parent)setContent(content)// Set the view tree owners before setting the content view so that the inflation process// and attach listeners will see them already presentsetOwners()setContentView(this, DefaultActivityContentLayoutParams)}}

布局阶段

在布局阶段,Compose 会使用在组合阶段生成的界面树 作为输入,计算每个布局节点在界面树中的测量和放置位置,此过程中将遍历每个LayoutNode节点执行子节点测量、自我测量以及放置子节点三个过程。

以上图的LayoutNode节点树为例,此过程可描述为:

1、Row 测量其子项 Image 和 Column。

2、系统测量了 Image。它没有任何子元素,因此它决定自己的 尺寸,并将尺寸报告给 Row。

3、接下来测量 Column。它会测量自己的子项(两个 Text 可组合项)。

4、系统将测量第一个 Text。由于没有任何子元素,因此它决定 自己的尺寸,并将其尺寸报告给 Column。系统测量第二个 Text。由于没有任何子元素,因此它决定 并将其报告给 Column。

5、Column 使用子测量值来确定自己的尺寸。它使用 最大子元素宽度及其子元素高度之和。

6、Column 会相对于自身放置其子项,并将其置于子项下方 相互垂直

7、Row 使用子测量值来确定自己的尺寸。它使用 子元素的最大高度及其子元素宽度之和。然后 子项。

采用深度遍历的方式执行LayoutNode树的遍历,基于constrains约束,树上每个组件所在的位置在遍历完成后都将计算完成,即完成布局阶段,等待后续的渲染阶段。

而布局阶段中,Modifier类已经开始在遍历的时候就被加载,并在宽高计算时被认为是待度量的因素。具体各组件的度量策略我附上一张表格。

!!! 目前核心关心的是Modifier属性是怎么被加载的?

① 组成Modifier链

Surface(modifier = Modifier.size(200.dp) // 设置组件大小.background(Color.LightGray) // 设置背景颜色.offset(x = 10.dp, y = 20.dp) // 设置偏移量) {Text(text = "Hello, Jetpack Compose!",fontSize = 20.sp,color = Color.Black,modifier = Modifier.padding(8.dp) // 内部文本的额外内边距)}

以此代码为例,Surface组件使用Modifier伴生对象基于链式调用的方式声明了多个属性,也正如此Modifier是Compose中修饰 UI 组件的关键数据结构。

interface Modifier {fun <R> foldIn(initial: R, operation: (R, Element) -> R): Rfun <R> foldOut(initial: R, operation: (Element, R) -> R): Rfun any(predicate: (Element) -> Boolean): Booleanfun all(predicate: (Element) -> Boolean): Booleaninfix fun then(other: Modifier): Modifier = ...interface Element : Modifier {...}companion object : Modifier {...}}

Modifier 接口有三个直接实现类或接口:伴生对象 Modifier、内部子接口Modifier.Element、CombinedModifier

  1. 伴生对象 Modifier:最常用的 Modifier即在代码中使用 Modifier.xxx()
  2. 内部子接口 Modifier.Element:当我们使用Modifier.xxx()时,其内部实际会创建一个Modifier 实例。如使用 Modifier.size(100.dp) 时,内部会创建一个 SizeModifier 实例;

其背后的继承关系是

而类似LayoutModifier的中间类显示如下,不同的中间Modifier.Element子类将使得Modifier链建立时使用CombinedModifier来链接;

② Modifier链的构建过程

  1. then()

size属性定义时建立的SizeModifier实例被当作参数传入 then() 方法中。而这个 then() 方法就是 Modifier 间相互连接的关键方法。

Modifier.size(100.dp)fun Modifier.size(size: Dp) = this.then( // 关键方法SizeModifier(...))// 返回待连接的Modifiercompanion object : Modifier {...override infix fun then(other: Modifier): Modifier = other}
  1. 继续链式调用后续属性,BackGround, padding

Modifier.size(100.dp).background(Color.Red)fun Modifier.background(color: Color,shape: Shape = RectangleShape
) = this.then( // 当前 this 指向 SizeModifier 实例Background(...))
  1. 而此时Modifier链也将引入新的类型CombinedModifier来链接所对应的中间Modifier.Element子类不一致时的Modifier

interface Modifier {infix fun then(other: Modifier): Modifier =if (other === Modifier) this else CombinedModifier(this, other)}class CombinedModifier(private val outer: Modifier,private val inner: Modifier) : Modifier

形成以下的样式

所有属性全部上链会形成

至此Modifier链已经构建完成,而在LayoutNode遍历时会基于nodes属性访问管理Modifier链的Nodechain

internal val nodes = NodeChain(this)

而辅助遍历时的数据结构是

internal val innerCoordinator: NodeCoordinatorget() = nodes.innerCoordinatorinternal val layoutDelegate = LayoutNodeLayoutDelegate(this)    internal val outerCoordinator: NodeCoordinatorget() = nodes.outerCoordinator

innerCoordinator是指最内层的协调器,直接与LayoutNode关联,负责处理Modifier链的内部操作,包括处理内部Modifier、管理LayoutNode子LayoutNode,协助他们的度量工作以及传递事件;

outerCoordinator是指最外层的协调器,负责处理Modifier链的外部操作,包括处理外部Modifier,协调Modifier的调用顺序以及管理LayoutNode父节点;

其中内部Modifier和外部Modifier的分辨规则是:

  1. 内部 Modifier 是指那些主要影响组件的布局和测量的修饰符。这些修饰符通常在LayoutNode的内部进行操作,改变组件的尺寸、位置和布局行为。( padding, size, fillMaxWidth / fillMaxHeight, wrapContentSize, aspectRatio, weight)
  2. 外部 Modifier 是指那些主要影响组件的绘制和偏移的修饰符。这些修饰符通常在LayoutNode的外部进行操作,改变组件的外观、透明度和位置偏移等。( background, border, offset, alpha, clip, shadow);

而其中访问Modifier链的过程将基于foldin与foldout方法取到Modifier上所有的设置信息,从而将外部 or 内部 属性的定义值反馈到当前LayoutNode的width, height上,并最后在父节点的constrains限制下输出最大的width和height;

fun <R> foldIn(initial: R, operation: (R, Element) -> R): R
// foldIn(): 正向遍历 Modifier 链,SizeModifier-> Background -> PaddingModifierfun <R> foldOut(initial: R, operation: (Element, R) -> R): R
// foldOut(): 反向遍历 Modifier 链, PaddingModifier -> Background ->SizeModifier

绘制阶段

绘制代码期间的状态读取会影响绘制阶段。常见示例包括 Canvas()Modifier.drawBehind Modifier.drawWithContent

Modifier知识补充

Compose UI组件 Modifier子类 类图

Compose 常用UI组件 LayoutNode、Modifier、MeasurePolicy汇总

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • js实现点击图片放大效果
  • 科研绘图配色大全
  • 0821作业+思维导图
  • C++ //练习 18.22 已知存在如下所示的类的继承体系,其中每个类都定义了一个默认构造函数:
  • 虚拟机安装centos7-桥接模式
  • docker部署postgresSQL 并做持久化
  • 【JAVA CORE_API】Day19 多线程API(2)、多线程并发安全问题、同步
  • etcd参数解释
  • 【MySQL 10】表的内外连接 (带思维导图)
  • 科技大厂对AI的垄断
  • Ansible:远程自动化运维
  • EmguCV学习笔记 VB.Net 6.1 边缘检测
  • 深入探讨 C++ 中的 `constexpr` 函数及其限制
  • UE5.4 - 编辑器页面和概念术语
  • 达梦数据库表结构导出到 Excel 教程
  • 2017前端实习生面试总结
  • docker容器内的网络抓包
  • input的行数自动增减
  • JAVA_NIO系列——Channel和Buffer详解
  • JavaScript HTML DOM
  • JWT究竟是什么呢?
  • Mac转Windows的拯救指南
  • QQ浏览器x5内核的兼容性问题
  • React 快速上手 - 07 前端路由 react-router
  • SegmentFault 社区上线小程序开发频道,助力小程序开发者生态
  • Vue官网教程学习过程中值得记录的一些事情
  • Vue组件定义
  • 前端
  • 前端 CSS : 5# 纯 CSS 实现24小时超市
  • 一起来学SpringBoot | 第三篇:SpringBoot日志配置
  • 《码出高效》学习笔记与书中错误记录
  • Spark2.4.0源码分析之WorldCount 默认shuffling并行度为200(九) ...
  • ​渐进式Web应用PWA的未来
  • ###51单片机学习(2)-----如何通过C语言运用延时函数设计LED流水灯
  • #stm32整理(一)flash读写
  • $redis-setphp_redis Set命令,php操作Redis Set函数介绍
  • ( 用例图)定义了系统的功能需求,它是从系统的外部看系统功能,并不描述系统内部对功能的具体实现
  • (2020)Java后端开发----(面试题和笔试题)
  • (C#)Windows Shell 外壳编程系列4 - 上下文菜单(iContextMenu)(二)嵌入菜单和执行命令...
  • (附源码)spring boot校园健康监测管理系统 毕业设计 151047
  • (原+转)Ubuntu16.04软件中心闪退及wifi消失
  • (原创) cocos2dx使用Curl连接网络(客户端)
  • (转)创业家杂志:UCWEB天使第一步
  • .describe() python_Python-Win32com-Excel
  • .NET CF命令行调试器MDbg入门(四) Attaching to Processes
  • .NET 的程序集加载上下文
  • .net 写了一个支持重试、熔断和超时策略的 HttpClient 实例池
  • .Net 中的反射(动态创建类型实例) - Part.4(转自http://www.tracefact.net/CLR-and-Framework/Reflection-Part4.aspx)...
  • .net6 当连接用户的shell断掉后,dotnet会自动关闭,达不到长期运行的效果。.NET 进程守护
  • .NET开发不可不知、不可不用的辅助类(一)
  • .NET开源项目介绍及资源推荐:数据持久层 (微软MVP写作)
  • :=
  • @AutoConfigurationPackage的使用
  • @LoadBalanced 和 @RefreshScope 同时使用,负载均衡失效分析
  • [ vulhub漏洞复现篇 ] Grafana任意文件读取漏洞CVE-2021-43798