当前位置: 首页 > news >正文

Python精选200Tips:181-182

针对图像的经典卷积网络结构进化史及可视化

  • 针对图像的经典卷积网络结构进化史及可视化(续)
    • P181--MobileNet【2017】
      • 模型结构及创新性说明
      • 模型结构代码
        • MobileNet V1版本
        • MobileNet V2版本
        • MobileNet V3 版本
          • Small版本
          • Large版本
    • P182--EfficientNet【2019】
      • 模型结构及创新性说明
      • 模型结构代码
        • B1--B7版本

运行系统:macOS Sequoia 15.0
Python编译器:PyCharm 2024.1.4 (Community Edition)
Python版本:3.12
TensorFlow版本:2.17.0
Pytorch版本:2.4.1

往期链接:

1-56-1011-2021-3031-4041-50
51-60:函数61-70:类71-80:编程范式及设计模式
81-90:Python编码规范91-100:Python自带常用模块-1
101-105:Python自带模块-2106-110:Python自带模块-3
111-115:Python常用第三方包-频繁使用116-120:Python常用第三方包-深度学习
121-125:Python常用第三方包-爬取数据126-130:Python常用第三方包-为了乐趣
131-135:Python常用第三方包-拓展工具1136-140:Python常用第三方包-拓展工具2

Python项目实战

141-145146-150151-155156-160161-165166-170171-175176-180

针对图像的经典卷积网络结构进化史及可视化(续)

P181–MobileNet【2017】

模型结构及创新性说明

MobileNet是一系列为移动和嵌入式视觉应用设计的轻量级卷积神经网络。以下是MobileNet各个版本的的主要特点:

(1)MobileNetV1版本

主要特点

  • 引入深度可分离卷积(Depthwise Separable Convolution)
  • 使用宽度乘子(Width Multiplier)和分辨率乘子(Resolution Multiplier)调整模型大小和复杂度

创新点

  • 深度可分离卷积将标准卷积分解为深度卷积和逐点卷积,大大减少了计算量
  • 使用ReLU6作为激活函数,有利于低精度计算

(2)MobileNetV2版本

主要特点

  • 引入倒置残差结构(Inverted Residual Structure)
  • 设计线性瓶颈(Linear Bottleneck)

创新点

  • 倒置残差结构先扩展通道数,再做深度卷积,最后压缩回原来的通道数
  • 去掉了最后一个ReLU,使用线性激活,有助于保留低维特征

(3)MobileNetV3

主要特点

  • 网络结构搜索(NAS)优化的网络架构
  • 引入新的激活函数:h-swish
  • 集成Squeeze-and-Excitation (SE) 模块
  • 提供Small和Large两个版本

创新点

  • 使用NAS自动搜索最优网络结构
  • h-swish激活函数提高了精度,同时计算效率高
  • SE模块增强了特征的表达能力
  • 优化了网络的首尾层,进一步提高效率

模型结构代码

MobileNet V1版本
import tensorflow as tf
from tensorflow.keras import layers, modelsdef depthwise_conv_block(inputs, pointwise_conv_filters, alpha,depth_multiplier=1, strides=(1, 1), block_id=1):"""Adds a depthwise convolution block.A depthwise convolution block consists of a depthwise conv,batch normalization, ReLU6, pointwise convolution,batch normalization and ReLU6 activation."""channel_axis = -1pointwise_conv_filters = int(pointwise_conv_filters * alpha)x = layers.DepthwiseConv2D((3, 3),padding='same',depth_multiplier=depth_multiplier,strides=strides,use_bias=False,name='conv_dw_%d' % block_id)(inputs)x = layers.BatchNormalization(axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)x = layers.ReLU(6., name='conv_dw_%d_relu' % block_id)(x)x = layers.Conv2D(pointwise_conv_filters, (1, 1),padding='same',use_bias=False,strides=(1, 1),name='conv_pw_%d' % block_id)(x)x = layers.BatchNormalization(axis=channel_axis, name='conv_pw_%d_bn' % block_id)(x)return layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)def MobileNetV1(input_shape=(224, 224, 3),alpha=1.0,depth_multiplier=1,dropout=1e-3,classes=1000):"""Instantiates the MobileNet architecture.Arguments:input_shape: Optional shape tuple, to be specified if you wouldlike to use a model with an input img resolution that is not(224, 224, 3).alpha: Controls the width of the network. This is known as thewidth multiplier in the MobileNet paper.- If `alpha` < 1.0, proportionally decreases the numberof filters in each layer.- If `alpha` > 1.0, proportionally increases the numberof filters in each layer.- If `alpha` = 1, default number of filters from the paperare used at each layer.depth_multiplier: Depth multiplier for depthwise convolution.This is called the resolution multiplier in the MobileNet paper.dropout: Dropout rate.classes: Optional number of classes to classify images into.Returns:A Keras model instance."""img_input = layers.Input(shape=input_shape)x = layers.Conv2D(int(32 * alpha), (3, 3),strides=(2, 2),padding='same',use_bias=False,name='conv1')(img_input)x = layers.BatchNormalization(axis=-1, name='conv1_bn')(x)x = layers.ReLU(6., name='conv1_relu')(x)x = depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)x = depthwise_conv_block(x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)x = depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)x = depthwise_conv_block(x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)x = depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)x = depthwise_conv_block(x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)x = depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)x = layers.GlobalAveragePooling2D()(x)x = layers.Reshape((1, 1, int(1024 * alpha)))(x)x = layers.Dropout(dropout, name='dropout')(x)x = layers.Conv2D(classes, (1, 1),padding='same',name='conv_preds')(x)x = layers.Reshape((classes,), name='reshape_2')(x)x = layers.Activation('softmax', name='act_softmax')(x)model = models.Model(img_input, x, name='mobilenet_v1')return model# 创建MobileNet V1模型
model = MobileNetV1(input_shape=(224, 224, 3), classes=1000)# 打印模型摘要
model.summary()

可以通过调整alpha参数来创建不同大小的MobileNetV1模型:

custom_model = MobileNetV1(input_shape=(224, 224, 3), classes=10, alpha=0.75)
custom_model.summary()

这将创建一个稍微窄一些(alpha=0.75)的MobileNet模型,用于10类分类任务。

MobileNet V2版本
import tensorflow as tf
from tensorflow.keras import layers, modelsdef inverted_residual_block(inputs, filters, stride, expand_ratio, alpha):input_channels = inputs.shape[-1]pointwise_filters = int(filters * alpha)# Expansion phasex = layers.Conv2D(int(input_channels * expand_ratio), kernel_size=1, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)# Depthwise Convolutionx = layers.DepthwiseConv2D(kernel_size=3, strides=stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)# Projectionx = layers.Conv2D(pointwise_filters, kernel_size=1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)# Residual connection if possibleif stride == 1 and input_channels == pointwise_filters:return layers.Add()([inputs, x])return xdef MobileNetV2(input_shape=(224, 224, 3), num_classes=1000, alpha=1.0, include_top=True):inputs = layers.Input(shape=input_shape)# First Convolution Layerx = layers.Conv2D(int(32 * alpha), kernel_size=3, strides=(2, 2), padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)# Inverted Residual Blocksx = inverted_residual_block(x, filters=16, stride=1, expand_ratio=1, alpha=alpha)x = inverted_residual_block(x, filters=24, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=24, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=32, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=32, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=32, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=96, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=96, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=96, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=160, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=160, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=160, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=320, stride=1, expand_ratio=6, alpha=alpha)# Last Convolution Layerx = layers.Conv2D(int(1280 * alpha), kernel_size=1, use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)if include_top:x = layers.GlobalAveragePooling2D()(x)x = layers.Dense(num_classes, activation='softmax')(x)model = models.Model(inputs, x, name='MobileNetV2')return model# 创建MobileNet V2模型
model = MobileNetV2(input_shape=(224, 224, 3), num_classes=1000)# 打印模型摘要
model.summary()
MobileNet V3 版本
Small版本
import tensorflow as tf
from tensorflow.keras import layers, modelsclass HSwish(layers.Layer):def call(self, x):return x * tf.nn.relu6(x + 3) / 6class HSigmoid(layers.Layer):def call(self, x):return tf.nn.relu6(x + 3) / 6def squeeze_excite_block(inputs, se_ratio=0.25):x = layers.GlobalAveragePooling2D()(inputs)filters = inputs.shape[-1]x = layers.Dense(max(1, int(filters * se_ratio)), activation='relu')(x)x = layers.Dense(filters, activation=HSigmoid())(x)x = layers.Reshape((1, 1, filters))(x)return layers.multiply([inputs, x])def bneck(inputs, out_channels, exp_channels, kernel_size, stride, se_ratio, activation, alpha=1.0):x = layers.Conv2D(int(exp_channels * alpha), 1, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = activation(x)x = layers.DepthwiseConv2D(kernel_size, stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = activation(x)if se_ratio:x = squeeze_excite_block(x, se_ratio)x = layers.Conv2D(int(out_channels * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)if stride == 1 and inputs.shape[-1] == int(out_channels * alpha):return layers.Add()([inputs, x])return xdef MobileNetV3Small(input_shape=(224, 224, 3), num_classes=1000, alpha=1.0, include_top=True):inputs = layers.Input(shape=input_shape)x = layers.Conv2D(16, 3, strides=2, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = HSwish()(x)x = bneck(x, 16, 16, 3, 2, 0.25, layers.ReLU(), alpha)x = bneck(x, 24, 72, 3, 2, None, layers.ReLU(), alpha)x = bneck(x, 24, 88, 3, 1, None, layers.ReLU(), alpha)x = bneck(x, 40, 96, 5, 2, 0.25, HSwish(), alpha)x = bneck(x, 40, 240, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 40, 240, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 48, 120, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 48, 144, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 96, 288, 5, 2, 0.25, HSwish(), alpha)x = bneck(x, 96, 576, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 96, 576, 5, 1, 0.25, HSwish(), alpha)x = layers.Conv2D(int(576 * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = HSwish()(x)x = layers.GlobalAveragePooling2D()(x)x = layers.Reshape((1, 1, int(576 * alpha)))(x)x = layers.Conv2D(int(1024 * alpha), 1, padding='same')(x)x = HSwish()(x)if include_top:x = layers.Conv2D(num_classes, 1, padding='same', activation='softmax')(x)x = layers.Reshape((num_classes,))(x)model = models.Model(inputs, x, name='MobileNetV3Small')return model# 创建MobileNet V3 Small模型
model = MobileNetV3Small(input_shape=(224, 224, 3), num_classes=1000)# 打印模型摘要
model.summary()
Large版本
import tensorflow as tf
from tensorflow.keras import layers, modelsclass HSwish(layers.Layer):def call(self, x):return x * tf.nn.relu6(x + 3) / 6class HSigmoid(layers.Layer):def call(self, x):return tf.nn.relu6(x + 3) / 6def squeeze_excite_block(inputs, se_ratio=0.25):x = layers.GlobalAveragePooling2D()(inputs)filters = inputs.shape[-1]x = layers.Dense(max(1, int(filters * se_ratio)), activation='relu')(x)x = layers.Dense(filters, activation=HSigmoid())(x)x = layers.Reshape((1, 1, filters))(x)return layers.multiply([inputs, x])def bneck(inputs, out_channels, exp_channels, kernel_size, stride, se_ratio, activation, alpha=1.0):x = layers.Conv2D(int(exp_channels * alpha), 1, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = activation(x)x = layers.DepthwiseConv2D(kernel_size, stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = activation(x)if se_ratio:x = squeeze_excite_block(x, se_ratio)x = layers.Conv2D(int(out_channels * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)if stride == 1 and inputs.shape[-1] == int(out_channels * alpha):return layers.Add()([inputs, x])return xdef MobileNetV3Large(input_shape=(224, 224, 3), num_classes=1000, alpha=1.0, include_top=True):inputs = layers.Input(shape=input_shape)x = layers.Conv2D(16, 3, strides=2, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = HSwish()(x)x = bneck(x, 16, 16, 3, 1, None, layers.ReLU(), alpha)x = bneck(x, 24, 64, 3, 2, None, layers.ReLU(), alpha)x = bneck(x, 24, 72, 3, 1, None, layers.ReLU(), alpha)x = bneck(x, 40, 72, 5, 2, 0.25, layers.ReLU(), alpha)x = bneck(x, 40, 120, 5, 1, 0.25, layers.ReLU(), alpha)x = bneck(x, 40, 120, 5, 1, 0.25, layers.ReLU(), alpha)x = bneck(x, 80, 240, 3, 2, None, HSwish(), alpha)x = bneck(x, 80, 200, 3, 1, None, HSwish(), alpha)x = bneck(x, 80, 184, 3, 1, None, HSwish(), alpha)x = bneck(x, 80, 184, 3, 1, None, HSwish(), alpha)x = bneck(x, 112, 480, 3, 1, 0.25, HSwish(), alpha)x = bneck(x, 112, 672, 3, 1, 0.25, HSwish(), alpha)x = bneck(x, 160, 672, 5, 2, 0.25, HSwish(), alpha)x = bneck(x, 160, 960, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 160, 960, 5, 1, 0.25, HSwish(), alpha)x = layers.Conv2D(int(960 * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = HSwish()(x)x = layers.GlobalAveragePooling2D()(x)x = layers.Reshape((1, 1, int(960 * alpha)))(x)x = layers.Conv2D(int(1280 * alpha), 1, padding='same')(x)x = HSwish()(x)if include_top:x = layers.Conv2D(num_classes, 1, padding='same', activation='softmax')(x)x = layers.Reshape((num_classes,))(x)model = models.Model(inputs, x, name='MobileNetV3Large')return model# 创建MobileNet V3 Large模型
model = MobileNetV3Large(input_shape=(224, 224, 3), num_classes=1000)# 打印模型摘要
model.summary()

P182–EfficientNet【2019】

模型结构及创新性说明

EfficientNet是由Google研究人员在2019年提出的一系列卷积神经网络模型,旨在提高模型效率和准确性。以下是EfficientNet的主要特点:

模型结构

  • 基于MobileNetV2的倒置残差结构
  • 使用Squeeze-and-Excitation (SE) 块
  • 采用复合缩放方法

创新性:

  • 提出了复合缩放方法,同时缩放网络的宽度、深度和分辨率
  • 通过神经架构搜索(NAS)优化基础网络结构
  • 在同等计算资源下,实现了更高的准确率

模型结构代码

B0版本

import matplotlib.pyplot as plt
import tensorflow as tf
from keras.utils import plot_model
from tensorflow.keras import layers, models# macos系统显示中文
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']def swish(x):return x * tf.nn.sigmoid(x)def se_block(inputs, se_ratio):channels = inputs.shape[-1]x = layers.GlobalAveragePooling2D()(inputs)x = layers.Dense(max(1, int(channels * se_ratio)), activation=swish)(x)x = layers.Dense(channels, activation='sigmoid')(x)return layers.Multiply()([inputs, x])def mbconv_block(inputs, out_channels, expand_ratio, stride, kernel_size, se_ratio):channels = inputs.shape[-1]x = inputs# Expansion phaseif expand_ratio != 1:expand_channels = channels * expand_ratiox = layers.Conv2D(expand_channels, 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)# Depthwise Convx = layers.DepthwiseConv2D(kernel_size, stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)# Squeeze and Excitationif se_ratio:x = se_block(x, se_ratio)# Output phasex = layers.Conv2D(out_channels, 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)if stride == 1 and channels == out_channels:x = layers.Add()([inputs, x])return xdef efficientnet(width_coefficient, depth_coefficient, resolution, dropout_rate):base_architecture = [# expansion, channels, repeats, stride, kernel_size[1, 16, 1, 1, 3],[6, 24, 2, 2, 3],[6, 40, 2, 2, 5],[6, 80, 3, 2, 3],[6, 112, 3, 1, 5],[6, 192, 4, 2, 5],[6, 320, 1, 1, 3]]inputs = layers.Input(shape=(resolution, resolution, 3))x = layers.Conv2D(32, 3, strides=2, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)for i, (expansion, channels, repeats, stride, kernel_size) in enumerate(base_architecture):channels = int(channels * width_coefficient)repeats = int(repeats * depth_coefficient)for j in range(repeats):x = mbconv_block(x, channels, expansion, stride if j == 0 else 1, kernel_size, se_ratio=0.25)x = layers.Conv2D(1280, 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)x = layers.GlobalAveragePooling2D()(x)if dropout_rate > 0:x = layers.Dropout(dropout_rate)(x)outputs = layers.Dense(1000, activation='softmax')(x)model = tf.keras.Model(inputs, outputs)return model# EfficientNet-B0 configuration
def efficientnet_b0():return efficientnet(width_coefficient=1.0,depth_coefficient=1.0,resolution=224,dropout_rate=0.2)# Create the model
model_b0 = efficientnet_b0()# Print model summary
model_b0.summary()# 将模型结构输出到pdf
plot_model(model_b0, to_file='model_b0.pdf', show_shapes=True,show_layer_names=True)
B1–B7版本
def efficientnet_b1():return efficientnet(width_coefficient=1.0, depth_coefficient=1.1, resolution=240, dropout_rate=0.2)def efficientnet_b2():return efficientnet(width_coefficient=1.1, depth_coefficient=1.2, resolution=260, dropout_rate=0.3)def efficientnet_b3():return efficientnet(width_coefficient=1.2, depth_coefficient=1.4, resolution=300, dropout_rate=0.3)def efficientnet_b4():return efficientnet(width_coefficient=1.4, depth_coefficient=1.8, resolution=380, dropout_rate=0.4)def efficientnet_b5():return efficientnet(width_coefficient=1.6, depth_coefficient=2.2, resolution=456, dropout_rate=0.4)def efficientnet_b6():return efficientnet(width_coefficient=1.8, depth_coefficient=2.6, resolution=528, dropout_rate=0.5)def efficientnet_b7():return efficientnet(width_coefficient=2.0, depth_coefficient=3.1, resolution=600, dropout_rate=0.5)

相关文章:

  • 全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)
  • 怎么绕开华为纯净模式安装软件
  • 【C++】类和对象(下)
  • 多级侧边菜单(递归)
  • 汽车3d动画渲染选择哪个?选择最佳云渲染解决方案
  • 2025年营收1亿美元咨询代理机构的游戏策略:基于AIGC的无限可扩展业务
  • 默认成员函数的练习之实现日期类
  • Linux 学习笔记(十六)—— 重定向与缓冲区
  • Growthly Quest 增长工具:助力 Web3 项目实现数据驱动的增长
  • MySQL vs PostgreSQL:2024年深度对比与选择指南
  • 后端返回内容有换行标识,前端如何识别换行
  • 14.安卓逆向-frida基础-编写hook脚本2
  • 【Python】数据可视化之分布图
  • 在C#中实现WebSocket的单聊和分频道聊天
  • 域 缺省参数 函数重载 引用
  • 【跃迁之路】【699天】程序员高效学习方法论探索系列(实验阶段456-2019.1.19)...
  • Android路由框架AnnoRouter:使用Java接口来定义路由跳转
  • Angular数据绑定机制
  • egg(89)--egg之redis的发布和订阅
  • HashMap ConcurrentHashMap
  • idea + plantuml 画流程图
  • JavaScript异步流程控制的前世今生
  • js
  • JS进阶 - JS 、JS-Web-API与DOM、BOM
  • js写一个简单的选项卡
  • miaov-React 最佳入门
  • MySQL主从复制读写分离及奇怪的问题
  • PHP的类修饰符与访问修饰符
  • 从地狱到天堂,Node 回调向 async/await 转变
  • 利用jquery编写加法运算验证码
  • 爬虫模拟登陆 SegmentFault
  • 用 vue 组件自定义 v-model, 实现一个 Tab 组件。
  • ​业务双活的数据切换思路设计(下)
  • ​字​节​一​面​
  • ###51单片机学习(2)-----如何通过C语言运用延时函数设计LED流水灯
  • (21)起落架/可伸缩相机支架
  • (C语言)共用体union的用法举例
  • (done) 声音信号处理基础知识(2) (重点知识:pitch)(Sound Waveforms)
  • (深度全面解析)ChatGPT的重大更新给创业者带来了哪些红利机会
  • (五)MySQL的备份及恢复
  • (详细版)Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models
  • (原創) X61用戶,小心你的上蓋!! (NB) (ThinkPad) (X61)
  • *算法训练(leetcode)第四十五天 | 101. 孤岛的总面积、102. 沉没孤岛、103. 水流问题、104. 建造最大岛屿
  • .MSSQLSERVER 导入导出 命令集--堪称经典,值得借鉴!
  • .NET Core 2.1路线图
  • .net core MVC 通过 Filters 过滤器拦截请求及响应内容
  • .NET Core 版本不支持的问题
  • .net core 控制台应用程序读取配置文件app.config
  • .NET Remoting Basic(10)-创建不同宿主的客户端与服务器端
  • .NET/C# 使用反射调用含 ref 或 out 参数的方法
  • .NET程序员迈向卓越的必由之路
  • .net打印*三角形
  • .net通用权限框架B/S (三)--MODEL层(2)
  • .NET中的Event与Delegates,从Publisher到Subscriber的衔接!
  • ?php echo ?,?php echo Hello world!;?