当前位置: 首页 > news >正文

【C语言】指针详解(一)

个人主页 : zxctscl
如有转载请先通知

文章目录

  • 1.内存与地址
  • 2.指针变量与地址
    • 2.1 取地址操作符&
    • 2.2 指针变量
    • 2.3 指针类型
    • 2.4 解引用操作符
    • 2.5 指针变量的大小
  • 3. 指针变量类型的意义
    • 3.1 指针的解引用
  • 4. const修饰指针
    • 4.1 const修饰变量
    • 4.2 const修饰指针变量
  • 5. 指针运算
    • 5.1 指针+-整数
    • 5.2 指针-指针
    • 5.3 指针的运算关系
  • 6. 野指针
    • 6.1 野指针成因
    • 6.2 如何规避野指针
      • 6.2.1 指针初始化
      • 6.2.2 小心指针越界
      • 6.2.3 指针变量不再使用时,及时置NULL,指针使用之前检查有效性
  • 7. assert断言
  • 8. 指针的使用和传址调用

1.内存与地址

大家对地址都不陌生,就像在生活中住酒店如何找到房间?那不就通过房卡上的房间号先确定楼层在确定房间。而这些房间号我们也叫地址。
把内存划分为一个个内存单元,一个单元为一个字节,而计算机中都是以一个比特位存储一个2进制位,一个字节也就是8个比特位。
这使得每个内存单元都有一个编号,通过这个编号,就能迅速找到这个内存空间。
在C语言中给地址起了新名叫:指针
内存编号

所以我们理解的:内存单元的编号 == 地址 == 指针

2.指针变量与地址

2.1 取地址操作符&

在C语言中创建变量其实就是在向内存申请空间。就像这样:

#include <stdio.h>
int main()
{int a = 5;return 0;
}

创建了整型变量a,内存中就申请了4个字节,用来存放整数5。每个字节都有地址,而上面申请的4个字节的地址分别在下面划红线四个。
在这里插入图片描述
如果我们想得到a的地址,就需要用到取地址操作符&
像下面这样就可,但值得注意的是我们打印的是地址用到的是**%p**。

#include <stdio.h>
int main()
{int a = 5;&a;printf("%p\n", &a);return 0;
}

x86

2.2 指针变量

我们通过取地址操作符&,得到的仅仅是地址,它就只是一个数值,有时候为了方便使用,我们把它用指针变量存储。

#include <stdio.h>
int main()
{int a = 5;int* p = &a;return 0;
}

指针变量也是一种变量,不过是用来存放地址,存放在指针变量中的值被理解为指针。

2.3 指针类型

指针也是有类型的。
就像前面所写的:

int a = 5;
int* p = &a;

在p的左边就是int*,*说明的是p为指针变量,而前面的int就是说明p指向的是整型(int)类型的对象。
同理指向char型的指针变量就是char*

char b = 'a';
char* p = &b;

2.4 解引用操作符

在C语言中,我们找到地址,就可以对地址所指向的对象,而此时所要用到的就是解引用操作符(*)。

#include <stdio.h>
int main()
{int a = 5;int* p = &a;*p=0;return 0;
}

而在上面的代码中,原来a为5,我们通过指针拿到了a的地址,然后通过解引用操作*p=0将原来a的5改为0。

2.5 指针变量的大小

32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要8个字节的空间,指针变的⼤⼩就是8个字节。

#include <stdio.h>
int main()
{printf("%zd\n", sizeof(char *));printf("%zd\n", sizeof(short *));printf("%zd\n", sizeof(int *));printf("%zd\n", sizeof(double *));printf("%zd\n", sizeof(float *));return 0;
}

32位平台下地址,指针变量大小是4个字节

x86
64位平台下地址,指针变量大小是8个字节
x64
结论:

  1. 32位平台下地址,指针变量大小是4个字节
  2. 64位平台下地址,指针变量大小是8个字节
  3. 注意指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的。

3. 指针变量类型的意义

指针变量的大小和类型无关,只要是指针变量,在同一个平台下,大小都是一样的,为什么还要有各种各样的指针类型呢

3.1 指针的解引用

对比,下面2段代码,主要在调试时观察内存的变化。

//代码1
#include <stdio.h>
int main()
{int n = 0x11223344;int* pi = &n;*pi = 0;return 0;
}
//代码2
#include <stdio.h>
int main()
{int n = 0x11223344;char* pc = (char*)&n;*pc = 0;return 0;
}

调试我们可以看到,代码1会将n的4个字节全部改为0,
在这里插入图片描述

但是代码2只是将n的第一个字节改为0。
在这里插入图片描述

结论:指针的类型决定了,对指针解引用的时候有多大的权限(一次能操作几个字节)。比如: char* 的指针解引用就只能访问一个字节,而 int* 的指针的解引用就能访问四个字节。

4. const修饰指针

4.1 const修饰变量

变量是可以修改的,如果把变量的地址交给一个指针变量,通过指针变量的也可以修改这个变量。
但是如果我们希望一个变量加上一些限制,不能被修改,怎么做呢?这就是const的作用。

#include <stdio.h>
int main()
{int m = 0;m = 20;//m是可以修改的const int n = 0;n = 20;//n是不能被修改的return 0;
}

在这里插入图片描述
代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就行修改,就不符合语法规则,就报错,致使没法直接修改n。

但是如果我们绕过n,使用n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。

#include <stdio.h>
int main()
{const int n = 0;printf("n = %d\n", n);int* p = &n;*p = 20;printf("n = %d\n", n);return 0;
}

在这里插入图片描述
可以看到这里一个确实修改了,但是我们还是要思考一下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?

4.2 const修饰指针变量

测试无const修饰的情况:

#include <stdio.h>
//代码1
void test1()
{int n = 10;int m = 20;int* p = &n;*p = 20;//ok?p = &m; //ok?
}

测试const放在*的左边情况:

void test2()
{//代码2int n = 10;int m = 20;const int* p = &n;*p = 20;//ok?p = &m; //ok?
}

在这里插入图片描述

测试const放在*的右边情况

void test3()
{int n = 10;int m = 20;int* const p = &n;*p = 20; //ok?p = &m; //ok?
}

在这里插入图片描述

测试*的左右两边都有const

void test4()
{int n = 10;int m = 20;int const* const p = &n;*p = 20; //ok?p = &m; //ok?
}

在这里插入图片描述
const修饰指针变量的时候:

  1. const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本身的内容可变。
  2. const如果放在*的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

5. 指针运算

指针的基本运算有三种,分别是:
• 指针± 整数
• 指针-指针
• 指针的关系运算

5.1 指针±整数

数组在内存中是连续存储的,只要知道第一个元素的地址,后面的元素依次就能找到。

int arr[]={1,2,3,4,5};

而所对应的下标为0,1,2,3,4。

在对不同类型指针变量加减时结果不同,
举个例子:

#include <stdio.h>
int main()
{int n = 10;int* p1 = &n;char* p2 = &n;printf("p1=%p\n", p1);printf("p1+1=%p\n", p1+1);printf("p2=%p\n", p2);printf("p2+1=%p\n", p2+1);return 0;
}

在下面为结果
int类型的就跳过了4个字节,
char类型就跳过1个字节
指针+-
结论:
指针的类型决定了,指针加减整数时,一次性跳过多少个字节。

5.2 指针-指针

在指针变量相同类型时,计算出的是中间间隔的个数。
举个例子:

#include <stdio.h>
int main()
{int arr[10] = { 0 };int* p1 = &arr[9];int* p2 = &arr[0];int ret = p1-p2 ;printf("%d\n", ret);return 0;
}

结果为
间隔9
指针类型不同时不能进行指针的加减运算。

5.3 指针的运算关系

计算数组的元素个数时,我们使用了sizeof(数组名),而sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小,单位是字节。
sizeof(arr[0])计算的是首元素的大小,单位也是字节。

#include <stdio.h>
int main()
{int arr[] = { 1,2,3,4,5,6,7,8,9,10 };int sz = sizeof(arr) / sizeof(arr[0]);printf("%d\n", sz);return 0;
}

数组大小
数组名就是数组首元素(第一个元素)的地址是对的,但是有两个例外:
1.sizeof(数组名),sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小,单位是字节。
2.&数组名,这里的数组名表示整个数组,取出的是整个数组的地址。
除此之外,任何地方使用数组名,数组名都表示首元素的地址。

6. 野指针

概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

6.1 野指针成因

  1. 指针未初始化
#include <stdio.h>
int main()
{int* p;//局部变量指针未初始化,默认为随机值*p = 20;return 0;
}

在这里插入图片描述

  1. 指针越界访问
#include <stdio.h>
int main()
{int arr[10] = { 0 };int* p = &arr[0];int i = 0;for (i = 0; i <= 11; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针*(p++) = i;}return 0;
}

在这里插入图片描述

  1. 指针指向的空间释放
#include <stdio.h>
int* test()
{int n = 100;return &n;
}
int main()
{int* p = test();printf("%d\n", *p);return 0;
}

在这里插入图片描述

6.2 如何规避野指针

6.2.1 指针初始化

如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋值NULL.NULL 是C语言中定义的一个标识符常量,值是0,0也是地址,这个地址是无法使用的,读写该地址会报错。

#ifdef __cplusplus#define NULL 0
#else#define NULL ((void *)0)
#endif

初始化如下:

#include <stdio.h>
int main()
{int num = 10;int*p1 = &num;int*p2 = NULL;return 0;
}

6.2.2 小心指针越界

一个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。

6.2.3 指针变量不再使用时,及时置NULL,指针使用之前检查有效性

当指针变量指向一块区域的时候,我们可以通过指针访问该区域,后期不再使用这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的一个规则就是:只要是NULL指针就不去访问,同时使用指针之前可以判断指针是否为NULL。
我们可以把野指针想象成野狗,野狗放任不管是⾮常危险的,所以我们可以找一棵树把野狗拴起来,就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓前来,就是把野指针暂时管理起来。
不过野狗即使拴起来我们也要绕着走,不能去挑逗野狗,有点危险;对于指针也是,在使用之前,我们也要判断是否为NULL,看看是不是被拴起来起来的野狗,如果是不能直接使用,如果不是我们再去使用。

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,67,7,8,9,10 };int* p = &arr[0];for (i = 0; i < 10; i++){*(p++) = i;}//此时p已经越界了,可以把p置为NULLp = NULL;//下次使⽤的时候,判断p不为NULL的时候再使⽤//...p = &arr[0];//重新让p获得地址if (p != NULL) //判断{//...}return 0;
}

7. assert断言

assert.h 头文件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如果不符合,就报
错终止运行。这个宏常常被称为“断言”。

assert(p != NULL);

代码在程序运行到这一行语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运行,否则就会终止运行,并且给出报错信息提示。
assert() 宏接受一个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写入一条错误信息,显示没有通过的表达式,以及包含这个表达式的文件名和行号。
assert() 的使用对程序员是非常友好的,使用assert() 有几个好处:它不仅能自动标识文件和出问题的行号,还有一种无需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问题,不需要再做断言,就在 #include<assert.h> 语句的前面,定义一个宏 NDEBUG 。

#define NDEBUG
#include <assert.h>

然后,重新编译程序,编译器就会禁⽤⽂件中所有的 assert() 语句。如果程序⼜出现问题,可以移除这条 #define NDBUG 指令(或者把它注释掉),再次编译,这样就重新启⽤了 assert() 语句。

assert() 的缺点是,因为引入了额外的检查,增加了程序的运行时间。
⼀般我们可以在debug中使用,在release版本中选择禁⽤assert就行,在VS这样的集成开发环境中,在release版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在release版本不影响用户使用时程序的效率。

8. 指针的使用和传址调用

学习指针的目的是使用指针解决问题,那什么问题,非指针不可呢?
例如:写一个函数,交换两个整型变量的值
一番思考后,我们可能写出这样的代码

#include <stdio.h>
void Swap1(int x, int y)
{int tmp = x;x = y;y = tmp;
}int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap1(a, b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

在这里插入图片描述
其实没产生交换的效果,这是为什么呢?
调试一下,试试呢?
在这里插入图片描述
我们发现在main函数内部,创建了a和b,a的地址是0x00cffdd0,b的地址是0x00cffdc4,在调用Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是x的地址是0x00cffcec,y的地址是0x00cffcf0,x和y确实接收到了a和b的值,不过x的地址和a的地址不一样,y的地址和b的地址不一样,相当于x和y是独立的空间,那么在Swap1函数内部交换x和y的值,自然不会影响a和b,当Swap1函数调用结束后回到main函数,a和b的没法交换。Swap1函数在使用的时候,是把变量本身直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用。

结论:实参传递给形参的时候,形参会单独创建一份临时空间来接收实参,对形参的修改不影响实参。所以Swap是失败的了。

那怎么办呢?
我们现在要解决的就是当调用Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接将a和b的值交换了。那么就可以使用指针了,在main函数中将a和b的地址传递给Swap函数,Swap函数里边通过地址间接的操作main函数中的a和b就好了

#include <stdio.h>void Swap2(int* px, int* py)
{int tmp = 0;tmp = *px;*px = *py;*py = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap2(&a, &b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

在这里插入图片描述
有问题请指出,大家一起进步!!!

相关文章:

  • 在 Kali Linux 中安装 Impacket
  • pytorch张量基础
  • 物联网将如何影响全球商业?
  • Java基础——十二、容器
  • [论文阅读] ChartInstruct: Instruction Tuning for Chart Comprehension and Reasoning
  • k8s中,服务的自动注册、自动感知、负载均衡,三个功能的含义及测试验证
  • 使用Python和Proxy302代理IP高效采集Bing图片
  • 软考-高级系统分析师知识点合集记录
  • 实验OSPF路由协议(课内实验)
  • 用python裁切PDF文件中的图片
  • 力扣(leetcode)每日一题 1014 最佳观光组合
  • React第十章(useState)
  • windows上安装mingw教程及mingw64国内下载地址汇总
  • 【JavaEE】http/https 超级详解
  • 六,MyBatis-Plus 扩展功能(逻辑删除,通用枚举,字段类型处理,自动填充功能,防全表更新与删除插件,MybatisX快速开发插件)
  • 345-反转字符串中的元音字母
  • android 一些 utils
  • Android框架之Volley
  • conda常用的命令
  • css的样式优先级
  • java正则表式的使用
  • Js基础知识(一) - 变量
  • miaov-React 最佳入门
  • NSTimer学习笔记
  • PermissionScope Swift4 兼容问题
  • springboot_database项目介绍
  • Spring技术内幕笔记(2):Spring MVC 与 Web
  • 订阅Forge Viewer所有的事件
  • 高性能JavaScript阅读简记(三)
  • 关于 Linux 进程的 UID、EUID、GID 和 EGID
  • 小而合理的前端理论:rscss和rsjs
  • 用 Swift 编写面向协议的视图
  • 不要一棍子打翻所有黑盒模型,其实可以让它们发挥作用 ...
  • # Kafka_深入探秘者(2):kafka 生产者
  • # 手柄编程_北通阿修罗3动手评:一款兼具功能、操控性的电竞手柄
  • #Linux(帮助手册)
  • #我与Java虚拟机的故事#连载15:完整阅读的第一本技术书籍
  • $.type 怎么精确判断对象类型的 --(源码学习2)
  • (1)无线电失控保护(二)
  • (12)Hive调优——count distinct去重优化
  • (android 地图实战开发)3 在地图上显示当前位置和自定义银行位置
  • (Java)【深基9.例1】选举学生会
  • (pytorch进阶之路)CLIP模型 实现图像多模态检索任务
  • (rabbitmq的高级特性)消息可靠性
  • (Spark3.2.0)Spark SQL 初探: 使用大数据分析2000万KF数据
  • (TipsTricks)用客户端模板精简JavaScript代码
  • (附源码)spring boot北京冬奥会志愿者报名系统 毕业设计 150947
  • (回溯) LeetCode 40. 组合总和II
  • (接口自动化)Python3操作MySQL数据库
  • (亲测成功)在centos7.5上安装kvm,通过VNC远程连接并创建多台ubuntu虚拟机(ubuntu server版本)...
  • (贪心 + 双指针) LeetCode 455. 分发饼干
  • .NET MAUI Sqlite数据库操作(二)异步初始化方法
  • .NET Standard 的管理策略
  • .NET Windows:删除文件夹后立即判断,有可能依然存在
  • .net 获取url的方法