当前位置: 首页 > news >正文

【多线程】c++11多线程编程(六)——条件变量(Condition Variable)

互斥锁std::mutex是一种最常见的线程间同步的手段,但是在有些情况下不太高效。

假设想实现一个简单的消费者生产者模型,一个线程往队列中放入数据,一个线程往队列中取数据,取数据前需要判断一下队列中确实有数据,由于这个队列是线程间共享的,所以,需要使用互斥锁进行保护,一个线程在往队列添加数据的时候,另一个线程不能取,反之亦然。用互斥锁实现如下:

#include <iostream>
#include <deque>
#include <thread>
#include <mutex>

std::deque<int> q;
std::mutex mu;

void function_1() {
    int count = 10;
    while (count > 0) {
        std::unique_lock<std::mutex> locker(mu);
        q.push_front(count);
        locker.unlock();
        std::this_thread::sleep_for(std::chrono::seconds(1));
        count--;
    }
}

void function_2() {
    int data = 0;
    while ( data != 1) {
        std::unique_lock<std::mutex> locker(mu);
        if (!q.empty()) {
            data = q.back();
            q.pop_back();
            locker.unlock();
            std::cout << "t2 got a value from t1: " << data << std::endl;
        } else {
            locker.unlock();
        }
    }
}
int main() {
    std::thread t1(function_1);
    std::thread t2(function_2);
    t1.join();
    t2.join();
    return 0;
}

//输出结果
//t2 got a value from t1: 10
//t2 got a value from t1: 9
//t2 got a value from t1: 8
//t2 got a value from t1: 7
//t2 got a value from t1: 6
//t2 got a value from t1: 5
//t2 got a value from t1: 4
//t2 got a value from t1: 3
//t2 got a value from t1: 2
//t2 got a value from t1: 1

可以看到,互斥锁其实可以完成这个任务,但是却存在着性能问题。

首先,function_1函数是生产者,在生产过程中,std::this_thread::sleep_for(std::chrono::seconds(1));表示延时1s,所以这个生产的过程是很慢的;function_2函数是消费者,存在着一个while循环,只有在接收到表示结束的数据的时候,才会停止,每次循环内部,都是先加锁,判断队列不空,然后就取出一个数,最后解锁。所以说,在1s内,做了很多无用功!这样的话,CPU占用率会很高,可能达到100%(单核)。如图:

CPU占用率.png

解决办法之一是给消费者也加一个小延时,如果一次判断后,发现队列是空的,就惩罚一下自己,延时500ms,这样可以减小CPU的占用率。

void function_2() {
    int data = 0;
    while ( data != 1) {
        std::unique_lock<std::mutex> locker(mu);
        if (!q.empty()) {
            data = q.back();
            q.pop_back();
            locker.unlock();
            std::cout << "t2 got a value from t1: " << data << std::endl;
        } else {
            locker.unlock();
            std::this_thread::sleep_for(std::chrono::milliseconds(500));
        }
    }
}

如图:

使用延时的CPU占用率.png

然后困难之处在于,如何确定这个延时时间呢,假如生产者生产的很快,消费者却延时500ms,也不是很好,如果生产者生产的更慢,那么消费者延时500ms,还是不必要的占用了CPU。

这就引出了条件变量(condition variable),c++11中提供了#include <condition_variable>头文件,其中的std::condition_variable可以和std::mutex结合一起使用,其中有两个重要的接口,notify_one()wait()wait()可以让线程陷入休眠状态,在消费者生产者模型中,如果生产者发现队列中没有东西,就可以让自己休眠,但是不能一直不干活啊,notify_one()就是唤醒处于wait中的其中一个条件变量(可能当时有很多条件变量都处于wait状态)。那什么时刻使用notify_one()比较好呢,当然是在生产者往队列中放数据的时候了,队列中有数据,就可以赶紧叫醒等待中的线程起来干活了。

使用条件变量修改后如下:

#include <iostream>
#include <deque>
#include <thread>
#include <mutex>
#include <condition_variable>

std::deque<int> q;
std::mutex mu;
std::condition_variable cond;

void function_1() {
    int count = 10;
    while (count > 0) {
        std::unique_lock<std::mutex> locker(mu);
        q.push_front(count);
        locker.unlock();
        cond.notify_one();  // Notify one waiting thread, if there is one.
        std::this_thread::sleep_for(std::chrono::seconds(1));
        count--;
    }
}

void function_2() {
    int data = 0;
    while ( data != 1) {
        std::unique_lock<std::mutex> locker(mu);
        while(q.empty())
            cond.wait(locker); // Unlock mu and wait to be notified
        data = q.back();
        q.pop_back();
        locker.unlock();
        std::cout << "t2 got a value from t1: " << data << std::endl;
    }
}
int main() {
    std::thread t1(function_1);
    std::thread t2(function_2);
    t1.join();
    t2.join();
    return 0;
}

此时CPU的占用率也很低。

使用条件变量时的CPU占用率.png

上面的代码有三个注意事项:

  1. function_2中,在判断队列是否为空的时候,使用的是while(q.empty()),而不是if(q.empty()),这是因为wait()从阻塞到返回,不一定就是由于notify_one()函数造成的,还有可能由于系统的不确定原因唤醒(可能和条件变量的实现机制有关),这个的时机和频率都是不确定的,被称作伪唤醒,如果在错误的时候被唤醒了,执行后面的语句就会错误,所以需要再次判断队列是否为空,如果还是为空,就继续wait()阻塞。
  2. 在管理互斥锁的时候,使用的是std::unique_lock而不是std::lock_guard,而且事实上也不能使用std::lock_guard,这需要先解释下wait()函数所做的事情。可以看到,在wait()函数之前,使用互斥锁保护了,如果wait的时候什么都没做,岂不是一直持有互斥锁?那生产者也会一直卡住,不能够将数据放入队列中了。所以,wait()函数会先调用互斥锁的unlock()函数,然后再将自己睡眠,在被唤醒后,又会继续持有锁,保护后面的队列操作。lock_guard没有lockunlock接口,而unique_lock提供了。这就是必须使用unique_lock的原因。
  3. 使用细粒度锁,尽量减小锁的范围,在notify_one()的时候,不需要处于互斥锁的保护范围内,所以在唤醒条件变量之前可以将锁unlock()

还可以将cond.wait(locker);换一种写法,wait()的第二个参数可以传入一个函数表示检查条件,这里使用lambda函数最为简单,如果这个函数返回的是truewait()函数不会阻塞会直接返回,如果这个函数返回的是falsewait()函数就会阻塞着等待唤醒,如果被伪唤醒,会继续判断函数返回值。

void function_2() {
    int data = 0;
    while ( data != 1) {
        std::unique_lock<std::mutex> locker(mu);
        cond.wait(locker, [](){ return !q.empty();} );  // Unlock mu and wait to be notified
        data = q.back();
        q.pop_back();
        locker.unlock();
        std::cout << "t2 got a value from t1: " << data << std::endl;
    }
}

除了notify_one()函数,c++还提供了notify_all()函数,可以同时唤醒所有处于wait状态的条件变量。

参考

  1. C++并发编程实战
  2. C++ Threading #6: Condition Variable


作者:StormZhu
链接:https://www.jianshu.com/p/c1dfa1d40f53
来源:简书

join的必要:

举个例子,现在有 A, B, C 三件事情,只有做完 A 和 B 才能去做 C,而 A 和 B 可以并行完成。

int main(){
    thread t = new thread(A);
    B();  // 此时 A 与 B 并行进行
    t.join();  // 确保 A 完成
    C();
}

相关文章:

  • 【多线程】c++11多线程编程(五)——unique_lock和lock_guard
  • 【C/C++】内存和字符操作整理
  • 【知识】如何高效地在github上找开源项目学习?
  • 【mySQL】比explain更加详细的分析计划:Query Profiler
  • 【mySQL】mysql是行级锁还是表级锁
  • 【mySQL】提升mysql性能的关键参数之innodb_buffer_pool_size、innodb_buffer_pool_instances
  • 【mySQL】数据库优化 方案
  • 【interview】遇到的困难
  • 【排序】常见排序算法及其时间复杂度
  • 【mySQL】数据库[配置]优化 方案(MySQL并行写入、查询性能调优(多核CPU))
  • 【C++11】C++ 中using 的使用
  • 【linux】进程间通信-消息队列
  • 【C++】C++ STL stack 用法
  • 【C++】什么是函数对象和函数对象的用处
  • 【C++】STL标准容器的排序操作和选择合适的排序算法
  • 【vuex入门系列02】mutation接收单个参数和多个参数
  • 【跃迁之路】【669天】程序员高效学习方法论探索系列(实验阶段426-2018.12.13)...
  • iOS筛选菜单、分段选择器、导航栏、悬浮窗、转场动画、启动视频等源码
  • JAVA多线程机制解析-volatilesynchronized
  • Linux编程学习笔记 | Linux多线程学习[2] - 线程的同步
  • mockjs让前端开发独立于后端
  • MQ框架的比较
  • MySQL常见的两种存储引擎:MyISAM与InnoDB的爱恨情仇
  • MySQL-事务管理(基础)
  • Spring Boot快速入门(一):Hello Spring Boot
  • swift基础之_对象 实例方法 对象方法。
  • vue的全局变量和全局拦截请求器
  • 技术胖1-4季视频复习— (看视频笔记)
  • 数据可视化之 Sankey 桑基图的实现
  • 提升用户体验的利器——使用Vue-Occupy实现占位效果
  • ​flutter 代码混淆
  • ​LeetCode解法汇总1276. 不浪费原料的汉堡制作方案
  • ​ssh免密码登录设置及问题总结
  • ( 用例图)定义了系统的功能需求,它是从系统的外部看系统功能,并不描述系统内部对功能的具体实现
  • (16)UiBot:智能化软件机器人(以头歌抓取课程数据为例)
  • (C#)if (this == null)?你在逗我,this 怎么可能为 null!用 IL 编译和反编译看穿一切
  • (JSP)EL——优化登录界面,获取对象,获取数据
  • (差分)胡桃爱原石
  • (多级缓存)缓存同步
  • (二)PySpark3:SparkSQL编程
  • (附源码)springboot猪场管理系统 毕业设计 160901
  • (一)appium-desktop定位元素原理
  • (转)JAVA中的堆栈
  • (转)Unity3DUnity3D在android下调试
  • (转)一些感悟
  • (转载)Google Chrome调试JS
  • ****** 二十三 ******、软设笔记【数据库】-数据操作-常用关系操作、关系运算
  • ../depcomp: line 571: exec: g++: not found
  • .NET Core SkiaSharp 替代 System.Drawing.Common 的一些用法
  • .net core Swagger 过滤部分Api
  • .NET MVC第三章、三种传值方式
  • .net web项目 调用webService
  • .NET/C# 获取一个正在运行的进程的命令行参数
  • .NET程序员迈向卓越的必由之路
  • .net利用SQLBulkCopy进行数据库之间的大批量数据传递