当前位置: 首页 > news >正文

神经网络 深度神经网络,深度神经网络基本原理

基于深度卷积神经网络进行人脸识别的原理是什么?

本质上是模式识别,把现实的东西抽象成计算机能够理解的数字。如果一个图片是256色的,那么图像的每一个像素点,都是0到255中间的一个值,这样你可以把一个图像转换成一个矩阵。如何去识别这个矩阵中的模式?

用一个相对来讲很小的矩阵在这个大的矩阵中从左到右,从上到下扫一遍,每一个小矩阵区块内,你可以统计0到255每种颜色出现的次数,以此来表达这一个区块的特征。

这样通过这一次“扫描”,你得到了另一个由很多小矩阵区块特征组成的矩阵。这一个矩阵比原始的矩阵要小吧?那就对了!

然后对这个小一点的矩阵,再进行一次上面的步骤,进行一次特征“浓缩”,用另一个意思来讲,就是把它抽象化。最后经过很多次的抽象化,你会将原始的矩阵变成一个1维乘1维的矩阵,这就是一个数字。

而不同的图片,比如一个猫,或者一个狗,一个熊,它们最后得到的这个数字会不同。

于是你把一个猫,一个狗,一个熊都抽象成了一个数字,比如0.34,0.75,0.23,这就达到让计算机来直接辨别的目的了。

人脸,表情,年龄,这些原理都是类似的,只是初始的样本数量会很大,最终都是通过矩阵将具体的图像抽象成了数字,因为计算机只认识数字。但是抽象的函数,会有所不同,达到的效果也会不同。

谷歌人工智能写作项目:神经网络伪原创

神经网络与深度神经网络有什么区别

神经网络为什么要深

深度学习与神经网络有什么区别

找深度学习和神经网络的不同点,其实主要的就是:原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。特征是由网络自己选择。

另外,深度学习作为机器学习的领域中一个新的研究方向,在被引进机器学习后,让机器学习可以更加的接近最初的目标,也就是人工智能。

深度学习主要就是对样本数据的内在规律还有表示层次的学习,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。

它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。

深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。

深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。而神经网络则是可以分为两种,一种是生物神经网络,而另一种则是人工神经网络。

生物神经网络就是生物的大脑神经元、主要是由细胞以及触点组成的,主要的作用就是让生物产生意识,或者是帮助生物实现思考还有行动的目的。神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。

人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

在工程与学术界也常直接简称为“神经网络”或类神经网络。

深度学习中为何可以通过叠加的RBM提取出高度抽象的特征?

首先,介绍了深度学习的原理,并总结了公共和常用的面部表情数据集。然后,介绍了基于深度学习的面部表情识别的三个步骤,并总结了图像预处理和面部表情分类的主要方法。

重点总结了目前用于提取性能良好的特征的深度学习框架以及这些方法的基本原理和优缺点。最后,指出了面部表情识别存在的问题和可能的发展趋势。

深度学习采用的模型是深度神经网络(DNN)模型,即包含多个隐藏层(又称隐层)的神经网络(NN)。

深度学习利用模型中的隐藏层,将原始输入逐层转化为浅层特征、中层特征、高层特征,直至通过特征组合达到最终的任务目标。

神经网络的研究起步较早,早期的感知器模型是神经网络最早的原型,也被称为单层神经网络(无隐藏层)。然而,感知器只能做最简单的线性分类任务,甚至不能解决简单的xOR问题。

但当网络中加入计算层后,它不仅能解决xOR问题,还能有很好的非线性分类效果。

1986年,Rumelhar和Hinton等人提出了BackPropagation(BP)算法,解决了两层神经网络需要复杂计算的问题,从而带动了业界两层神经网络研究的高潮。

定罪处斩,抄没家产,家人沦为奴婢。

小编针对问题做得详细解小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家也可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,您的点赞是对我最大的帮助,谢谢大家了。

人工智能,机器学习,深度学习,到底有何区别

有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。

今年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。

在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。

这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。五十年代,人工智能曾一度被极为看好。

之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

从概念的提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议(DartmouthConferences),提出了“人工智能”的概念。

其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。

坦白说,直到2012年之前,这两种声音还在同时存在。过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。

当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

| 人工智能(ArtificialIntelligence)——为机器赋予人的智能早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。

这就是我们现在所说的“强人工智能”(GeneralAI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”(NarrowAI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。

| 机器学习——一种实现人工智能的方法机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域。

传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。

人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。

使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。这个结果还算不错,但并不是那种能让人为之一振的成功。

特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

| 深度学习——一种实现机器学习的技术人工神经网络(ArtificialNeuralNetworks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。

神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。我们仍以停止(Stop)标志牌为例。

将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。

神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。

主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的GeoffreyHinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。

需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(AndrewNg)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。

吴教授为深度学习(deeplearning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。

Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

| 深度学习,给人工智能以璀璨的未来深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。

无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。

你的C-3PO我拿走了,你有你的终结者就好了。

深度学习的理论解释有哪些?

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flowgraph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算并且一个计算的值(计算的结果被应用到这个节点的孩子节点的值)。

考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有父亲,输出节点没有孩子。

这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。传统的前馈神经网络能够被看做拥有等于层数的深度(比如对于输出层为隐层数加1)。

SVMs有深度2(一个对应于核输出或者特征空间,另一个对应于所产生输出的线性混合)。

深度学习和机器学习的区别是什么

1、机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。2、深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。

但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。

3、机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

拓展资料:1、机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。

从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。

传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。

2、最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。

为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。其实有不少想法早年间也曾有过,但由于当时训练数据量不足、计算能力落后,因此最终的效果不尽如人意。

深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

人工智能,机器学习与深度学习,到底是什么关系

有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。

今年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。

在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。

这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

向左转|向右转如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。五十年代,人工智能曾一度被极为看好。

之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

从概念的提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议(DartmouthConferences),提出了“人工智能”的概念。

其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。

坦白说,直到2012年之前,这两种声音还在同时存在。过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。

当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

| 人工智能(ArtificialIntelligence)——为机器赋予人的智能向左转|向右转早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。

这就是我们现在所说的“强人工智能”(GeneralAI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”(NarrowAI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。

| 机器学习——一种实现人工智能的方法向左转|向右转机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域。

传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。

人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。

使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。这个结果还算不错,但并不是那种能让人为之一振的成功。

特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

| 深度学习——一种实现机器学习的技术向左转|向右转人工神经网络(ArtificialNeuralNetworks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。

神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。我们仍以停止(Stop)标志牌为例。

将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。

神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。

主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的GeoffreyHinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。

需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(AndrewNg)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。

吴教授为深度学习(deeplearning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。

Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

| 深度学习,给人工智能以璀璨的未来深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。

无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。

你的C-3PO我拿走了,你有你的终结者就好了。

 

相关文章:

  • Java基础异常-自定义异常
  • 神经网络模型如何使用的,神经网络模型是干嘛的
  • Windows10系统修复方法
  • 刷题记录:NC15322强迫症的序列
  • c++ 后台小练习--基于Vue的在线记事本
  • 超级简单快速上手Vue
  • 错误:ModuleNotFoundError: No module named ‘httplib‘
  • 力扣:22-括号生成
  • C# netcore 创建WebService(SoapCore)
  • ansible配置主机间免密登陆
  • 在项目中操作MySQL
  • 3倍通气的医用外科口罩,佩戴舒适过滤不打折
  • Linux文件及目录结构
  • lec formality inconclusive举例
  • 2022极端高温!人工智能如何预测森林火灾?| 万物AI
  • 《深入 React 技术栈》
  • 【vuex入门系列02】mutation接收单个参数和多个参数
  • C# 免费离线人脸识别 2.0 Demo
  • es6--symbol
  • js 实现textarea输入字数提示
  • js写一个简单的选项卡
  • KMP算法及优化
  • maven工程打包jar以及java jar命令的classpath使用
  • mysql常用命令汇总
  • PAT A1017 优先队列
  • Phpstorm怎样批量删除空行?
  • vue中实现单选
  • 从0搭建SpringBoot的HelloWorld -- Java版本
  • 关于List、List?、ListObject的区别
  • 基于Volley网络库实现加载多种网络图片(包括GIF动态图片、圆形图片、普通图片)...
  • 前端js -- this指向总结。
  • 三分钟教你同步 Visual Studio Code 设置
  • 腾讯视频格式如何转换成mp4 将下载的qlv文件转换成mp4的方法
  • 小程序button引导用户授权
  • 硬币翻转问题,区间操作
  • Python 之网络式编程
  • ​Java并发新构件之Exchanger
  • ​VRRP 虚拟路由冗余协议(华为)
  • (26)4.7 字符函数和字符串函数
  • (c语言)strcpy函数用法
  • (delphi11最新学习资料) Object Pascal 学习笔记---第2章第五节(日期和时间)
  • (Java实习生)每日10道面试题打卡——JavaWeb篇
  • (附源码)spring boot网络空间安全实验教学示范中心网站 毕业设计 111454
  • (十) 初识 Docker file
  • (已解决)报错:Could not load the Qt platform plugin “xcb“
  • (转)Linux整合apache和tomcat构建Web服务器
  • (转)可以带来幸福的一本书
  • .locked1、locked勒索病毒解密方法|勒索病毒解决|勒索病毒恢复|数据库修复
  • .net core 源码_ASP.NET Core之Identity源码学习
  • .net oracle 连接超时_Mysql连接数据库异常汇总【必收藏】
  • .Net Web窗口页属性
  • .net 程序 换成 java,NET程序员如何转行为J2EE之java基础上(9)
  • .netcore 获取appsettings
  • .NET实现之(自动更新)
  • .Net语言中的StringBuilder:入门到精通