当前位置: 首页 > news >正文

【nlp】天池学习赛-新闻文本分类-机器学习

目录

1、读取数据 

查看句子长度 

2、可视化 

2.1、新闻的字数分布

 2.2、新闻文本类别统计

 3、数据分析

 3.1、统计每个字符出现的次数

3.2、统计不同字符在句子中出现的次数

4、文本特征提取

4.1、CountVectors+RidgeClassifier

4.2、TF-IDF + RidgeClassifier 

4.3、MultinomialNB +CountVectors

4.4、MultinomialNB +TF-IDF

4.5、 绘图


1、读取数据 

import pandas as pd
import seaborn as sns

#  nrows=100  设置读取100行数据
train_df = pd.read_csv('新建文件夹/天池—新闻文本分类/train_set.csv', sep='\t')  
print(train_df.head())
   label                                               text
0      2  2967 6758 339 2021 1854 3731 4109 3792 4149 15...
1     11  4464 486 6352 5619 2465 4802 1452 3137 5778 54...
2      3  7346 4068 5074 3747 5681 6093 1777 2226 7354 6...
3      2  7159 948 4866 2109 5520 2490 211 3956 5520 549...
4      3  3646 3055 3055 2490 4659 6065 3370 5814 2465 5...

查看句子长度 

#句子长度分析
train_df['text_len'] = train_df['text'].apply(lambda x: len(x.split(' ')))
print(train_df['text_len'].describe())
#平均长度907.207110
count    200000.000000
mean        907.207110
std         996.029036
min           2.000000
25%         374.000000
50%         676.000000
75%        1131.000000
max       57921.000000
Name: text_len, dtype: float64

2、可视化 

2.1、新闻的字数分布

由图可知,字数 10000以上的新闻文本是极少数,小于5000

import matplotlib.pyplot as plt
_ = plt.hist(train_df['text_len'], bins=200)
plt.xlabel('Text char count')
plt.title("Histogram of char count")
plt.show()

 2.2、新闻文本类别统计

train_df['label'].value_counts().plot(kind = 'bar')
plt.title('News class count')
plt.xlabel('category')
plt.show()

数据集中标签的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}

  • 由图知,科技,股票,体育类别的新闻占比最多

 3、数据分析

 3.1、统计每个字符出现的次数

  • Counter()是collections里面的一个类,作用是计算出字符串或者列表等中不同元素出现的个数,返回值可以理解为一个字典: {"字符":”字符出现次数“}
#统计每个字符出现的次数

from collections import Counter

#先将所有字符用空格连接起来
all_lines = ' '.join(list(train_df['text']))

#统计按空格切割的字符数目
#Counter 返回字典,key为元素,值为元素个数。
word_count = Counter(all_lines.split(' '))

#按降序排列字符出现的次数   #排的是次数
word_count = sorted(word_count.items(),key = lambda d : d[1],reverse = True)

#打印字符的数量
print('len(word_count) : ',len(word_count))
#打印第一个字符出现的次数
print('word_count[0]:',word_count[0])
#打印最后一个字符出现的次数
print('word_count[-1]:',word_count[-1])

'''
len(word_count) :  6869
word_count[0]: ('3750', 7482224)
word_count[-1]: ('3133', 1)'''

#训练集中总共包括6869个字,其中编号3750的字出现的次数最多,编号3133的字出现的次数最少。

3.2、统计不同字符在句子中出现的次数

  • list(set()):对原列表去重并按从小到大排序
  • 将text中的字符用空格切割并打乱成无序列表,用空格连接无序列表 
  • 重复出现多次的很有可能是标点符号,字符3750,字符900和字符648在20w新闻的覆盖率接近99%,很有可能是标点符号。
#统计不同字符在句子中出现的次数

train_df['text_unique'] = train_df['text'].apply(lambda x : ' '.join(list(set(x.split(' ')))))
all_lines = ' '.join(list(train_df['text_unique']))
word_count = Counter(all_lines.split(' '))

#按降序排列字符出现的次数   #排的是次数
word_count = sorted(word_count.items(),key = lambda d :int(d[1]),reverse = True)

#打印出现次数前三的字符
print('word_count[0]:',word_count[0])
print('word_count[1]:',word_count[1])
print('word_count[2]:',word_count[2])

'''word_count[0]: ('3750', 197997)
word_count[1]: ('900', 197653)
word_count[2]: ('648', 191975)'''

4、文本特征提取

4.1、CountVectors+RidgeClassifier

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(max_features = 3000,ngram_range=(1,3))
train_text = vectorizer.fit_transform(train_df['text']) 

#CountVectors+RidgeClassifier
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split



df = pd.read_csv('新建文件夹/天池—新闻文本分类/train_set.csv', sep='\t',nrows = 15000) 
##统计每个字出现的次数,并赋值为0/1   用词袋表示text(特征集)
##max_features=3000,文档中出现频率最多的前3000个词
#ngram_range(1,3)(单个字,两个字,三个字 都会统计
vectorizer = CountVectorizer(max_features = 3000,ngram_range=(1,3))
train_text = vectorizer.fit_transform(train_df['text'])

X_train,X_val,y_train,y_val = train_test_split(train_text,df.label,test_size = 0.3)


#岭回归拟合训练集(包含text 和 label)
clf = RidgeClassifier()
clf.fit(X_train,y_train)
val_pred = clf.predict(X_val)
f1_score_cv = f1_score(y_val,val_pred,average = 'macro')
print(f1_score_cv)

4.2、TF-IDF + RidgeClassifier 

#TF-IDF + RidgeClassifier
import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score


df = pd.read_csv('新建文件夹/天池—新闻文本分类/train_set.csv', sep='\t',nrows = 15000)

train_test = TfidfVectorizer(ngram_range=(1,3),max_features = 3000).fit_transform(df.text)

X_train,X_val,y_train,y_val = train_test_split(train_text,df.label,test_size = 0.3)


clf = RidgeClassifier()
clf.fit(X_train,y_train)
val_pred = clf.predict(X_val)
f1_score_tfidf = f1_score(y_val,val_pred,average = 'macro')
print(f1_score_tfidf)

4.3、MultinomialNB +CountVectors

from sklearn.naive_bayes import MultinomialNB

df = pd.read_csv('新建文件夹/天池—新闻文本分类/train_set.csv', sep='\t',nrows = 15000) 
##统计每个字出现的次数,并赋值为0/1   用词袋表示text(特征集)
##max_features=3000文档中出现频率最多的前3000个词
#ngram_range(1,3)(单个字,两个字,三个字 都会统计
vectorizer = CountVectorizer(max_features = 3000,ngram_range=(1,3))
train_text = vectorizer.fit_transform(train_df['text'])

X_train,X_val,y_train,y_val = train_test_split(train_text,df.label,test_size = 0.3)

clf = MultinomialNB()
clf.fit(X_train,y_train)

val_pre_CountVec_NBC = clf.predict(X_val)
score_f1_CountVec_NBC = f1_score(y_val,val_pre_CountVec_NBC,average='macro')

print('CountVec + MultinomialNB : %.4f' %score_f1_CountVec_NBC )

4.4、MultinomialNB +TF-IDF

df = pd.read_csv('新建文件夹/天池—新闻文本分类/train_set.csv', sep='\t',nrows = 15000)

train_test = TfidfVectorizer(ngram_range=(1,3),max_features = 3000).fit_transform(df.text)

X_train,X_val,y_train,y_val = train_test_split(train_text,df.label,test_size = 0.3)

clf = MultinomialNB()
clf.fit(X_train,y_train)

val_pre_tfidf_NBC = clf.predict(X_val)
score_f1_tfidf_NBC = f1_score(y_val,val_pre_tfidf_NBC,average='macro')

print('TF-IDF + MultinomialNB : %.4f' %score_f1_tfidf_NBC )

4.5、 绘图

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

scores = [f1_score_cv , f1_score_tfidf , score_f1_CountVec_NBC , score_f1_tfidf_NBC]
x_ticks = np.arange(4)
x_ticks_label = ['CountVec_RidgeClassifier','tfidf_RidgeClassifier','CountVec_NBC','tfidf_NBC']
plt.plot(x_ticks,scores)
plt.xticks(x_ticks, x_ticks_label, fontsize=8) #指定字体
plt.ylabel('F1_score')
plt.show()

文本特征提取

相关文章:

  • 机器人系统,如何快速算法开发与原型机验证?
  • 调用静态方法
  • Vue的生命周期详解
  • 机器人控制算法九之机器人建模(XML)、工作场景Scances建模(VRML)
  • 【Unity3D日常开发】Unity3D中打包WEBGL后读取本地文件数据
  • 【SDS V6 专题】开放内容平台,XOCP 助力数据常青
  • 鲜花绿植学生网页设计模板 静态HTML鲜花学生网页作业成品 DIV CSS网上鲜花植物主题静态网页
  • 国庆在家没事干?教大家用Python做一个任何视频都能看的软件, 当然,只能看正经的
  • NumPy数据分析基础:NumPy特性以及Python内置数据结构对比详解
  • (附源码)ssm学生管理系统 毕业设计 141543
  • Java8的新特性
  • Oracle-RAC集群不同节点数据查询不一致
  • 【017】基于vue.js的网易云web端(实现播放、登录)(Node接口实现)
  • 界面控件DevExpress WPF即将发布Windows 11深色主题,期待吗?
  • 【JAVA程序设计】基于SSM(非maven)图书馆座位预约管理系统
  • [笔记] php常见简单功能及函数
  • 【编码】-360实习笔试编程题(二)-2016.03.29
  • axios请求、和返回数据拦截,统一请求报错提示_012
  • CSS进阶篇--用CSS开启硬件加速来提高网站性能
  • Golang-长连接-状态推送
  • IDEA常用插件整理
  • java8 Stream Pipelines 浅析
  • javascript 总结(常用工具类的封装)
  • MySQL-事务管理(基础)
  • PermissionScope Swift4 兼容问题
  • SQL 难点解决:记录的引用
  • TCP拥塞控制
  • vue2.0开发聊天程序(四) 完整体验一次Vue开发(下)
  • 回顾2016
  • 每个JavaScript开发人员应阅读的书【1】 - JavaScript: The Good Parts
  • 前端学习笔记之观察者模式
  • 如何将自己的网站分享到QQ空间,微信,微博等等
  • 如何解决微信端直接跳WAP端
  • 以太坊客户端Geth命令参数详解
  • “十年磨一剑”--有赞的HBase平台实践和应用之路 ...
  • 支付宝花15年解决的这个问题,顶得上做出十个支付宝 ...
  • # 计算机视觉入门
  • (02)Hive SQL编译成MapReduce任务的过程
  • (145)光线追踪距离场柔和阴影
  • (Forward) Music Player: From UI Proposal to Code
  • (翻译)Quartz官方教程——第一课:Quartz入门
  • (附源码)ssm户外用品商城 毕业设计 112346
  • (官网安装) 基于CentOS 7安装MangoDB和MangoDB Shell
  • (六)Hibernate的二级缓存
  • .bat批处理(三):变量声明、设置、拼接、截取
  • .bat批处理(一):@echo off
  • .MSSQLSERVER 导入导出 命令集--堪称经典,值得借鉴!
  • .Net Core 中间件验签
  • .net core开源商城系统源码,支持可视化布局小程序
  • .NET MAUI学习笔记——2.构建第一个程序_初级篇
  • .NET Standard 支持的 .NET Framework 和 .NET Core
  • .NET 读取 JSON格式的数据
  • .NETCORE 开发登录接口MFA谷歌多因子身份验证
  • .NET设计模式(2):单件模式(Singleton Pattern)
  • .NET性能优化(文摘)