当前位置: 首页 > news >正文

运维人必知必会的10个问题,不知道的快来补课!

运维人必知必会的10个问题,不知道的快来补课!今天就给大家详细介绍一下。

1.TCP/IP模型

TCP/IP协议模型(Transmission Control Protocol/Internet Protocol),包含了一系列构成互联网基础的网络协议,是Internet的核心协议。

基于TCP/IP的参考模型将协议分成四个层次,它们分别是链路层网络层传输层应用层。下图表示TCP/IP模型与OSI模型各层的对照关系。

TCP/IP协议族按照层次由上到下,层层包装。最上面的是应用层,这里面有http、ftp等等我们熟悉的协议。

而第二层则是传输层,著名的TCP和UDP协议就在这个层次。

第三层是网络层,IP协议就在这里,它负责对数据加上IP地址和其他的数据以确定传输的目标。

第四层是数据链路层,这个层次为待传送的数据加入一个以太网协议头,并进行CRC编码,为最后的数据传输做准备。

上图清楚地表示了TCP/IP协议中每个层的作用,而TCP/IP协议通信的过程其实就对应着数据入栈与出栈的过程。

入栈的过程:数据发送方每层不断地封装首部与尾部,添加一些传输的信息,确保能传输到目的地。

出栈的过程:数据接收方每层不断地拆除首部与尾部,得到最终传输的数据。

2.数据链路层

物理层负责0、1比特流与物理设备电压高低、光的闪灭之间的互换。数据链路层负责将0、1序列划分为数据帧从一个节点传输到临近的另一个节点,这些节点是通过MAC来唯一标识的(MAC,物理地址,一个主机会有一个MAC地址)。

封装成帧:把网络层数据报加头和尾,封装成帧,帧头中包括源MAC地址和目的MAC地址。

透明传输:零比特填充、转义字符。

可靠传输:在出错率很低的链路上很少用,但是无线链路WLAN会保证可靠传输。

差错检测(CRC):接收者检测错误,如果发现差错,丢弃该帧。

3.网络层

1.IP协议

IP协议是TCP/IP协议的核心,所有的TCP、UDP、IMCP、IGMP的数据都以IP数据格式传输。这里要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制,这被认为是上层协议:TCP或UDP要做的事情。

1.1 IP地址

在数据链路层中,我们一般通过MAC地址来识别不同的节点,而在IP层我们也要有一个类似的地址标识,这就是IP地址。

32位IP地址分为网络位和地址位,这样做可以减少路由器中路由表记录的数目,有了网络地址,就可以限定拥有相同网络地址的终端都在同一个范围内,那么路由表只需要维护一条这个网络地址的方向,就可以找到相应的这些终端了。

A类IP地址:0.0.0.0~127.0.0.0
B类IP地址:128.0.0.1~191.255.0.0
C类IP地址:192.168.0.0~239.255.255.0

1.2 IP协议头

这里只介绍八位的TTL字段。这个字段规定该数据包在穿过多少个路由之后才会被抛弃。某个IP数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。

这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64。

2.ARP及RARP协议

ARP是根据IP地址获取MAC地址的一种协议。ARP(地址解析)协议是一种解析协议,本来主机是完全不知道这个IP对应的是哪个主机的哪个接口,当主机要发送一个IP包的时候,会首先查一下自己的ARP高速缓存(就是一个IP-MAC地址对应表缓存)。

如果查询的IP-MAC值对不存在,那么主机就向网络发送一个ARP协议广播包,这个广播包里面就有待查询的IP地址,而直接收到这份广播的包的所有主机都会查询自己的IP地址,如果收到广播包的某一个主机发现自己符合条件,那么就准备好一个包含自己的MAC地址的ARP包传送给发送ARP广播的主机。

而广播主机拿到ARP包后会更新自己的ARP缓存(就是存放IP-MAC对应表的地方)。发送广播的主机就会用新的ARP缓存数据准备好数据链路层的的数据包发送工作。RARP协议的工作与此相反,不做赘述。

3.ICMP协议

IP协议并不是一个可靠的协议,它不保证数据被送达,那么自然的,保证数据送达的工作应该由其他的模块来完成。其中一个重要的模块就是ICMP(网络控制报文)协议。ICMP不是高层协议,而是IP层的协议。

当传送IP数据包发生错误,比如主机不可达、路由不可达等等,ICMP协议将会把错误信息封包,然后传送回给主机。给主机一个处理错误的机会,这也就是为什么说建立在IP层以上的协议是可能做到安全的原因。

4.Ping

ping可以说是ICMP的最著名的应用,是TCP/IP协议的一部分。利用“ping”命令可以检查网络是否连通,可以很好地帮助我们分析和判定网络故障。

例如:当我们某一个网站上不去的时候。通常会ping一下这个网站。ping会回显出一些有用的信息。

一般的信息如下:

ping这个单词源自声纳定位,而这个程序的作用也确实如此,它利用ICMP协议包来侦测另一个主机是否可达。原理是用类型码为0的ICMP发请求,受到请求的主机则用类型码为8的ICMP回应。

5.Traceroute

Traceroute是用来侦测主机到目的主机之间所经路由情况的重要工具,也是最便利的工具。

Traceroute的原理非常的有意思,它收到目的主机的IP后,首先给目的主机发送一个TTL=1的UDP数据包,而经过的第一个路由器收到这个数据包以后,就自动把TTL减1,而TTL变为0以后,路由器就把这个包给抛弃了,并同时产生一个主机不可达的ICMP数据报给主机。主机收到这个数据报以后再发一个TTL=2的UDP数据报给目的主机,然后刺激第二个路由器给主机发ICMP数据报。如此往复直到到达目的主机。这样,traceroute就拿到了所有的路由器IP。

6.TCP/UDP

TCP/UDP都是是传输层协议,但是两者具有不同的特性,同时也具有不同的应用场景,下面以图表的形式对比分析。

面向报文

面向报文的传输方式是应用层交给UDP多长的报文,UDP就照样发送,即一次发送一个报文。因此,应用程序必须选择合适大小的报文。若报文太长,则IP层需要分片,降低效率。若太短,会是IP太小。

面向字节流

面向字节流的话,虽然应用程序和TCP的交互是一次一个数据块(大小不等),但TCP把应用程序看成是一连串的无结构的字节流。TCP有一个缓冲,当应用程序传送的数据块太长,TCP就可以把它划分短一些再传送。关于拥塞控制,流量控制,是TCP的重点,后面讲解。

TCP和UDP协议的一些应用

什么时候应该使用TCP?

当对网络通讯质量有要求的时候,比如:整个数据要准确无误的传递给对方,这往往用于一些要求可靠的应用,比如HTTP、HTTPS、FTP等传输文件的协议,POP、SMTP等邮件传输的协议。

什么时候应该使用UDP?

当对网络通讯质量要求不高的时候,要求网络通讯速度能尽量的快,这时就可以使用UDP。

7.DNS

DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。

通过主机名,最终得到该主机名对应的IP地址的过程叫做域名解析(或主机名解析)。DNS协议运行在UDP协议之上,使用端口号53。

8.TCP连接的建立与终止

1.三次握手

TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的。三次握手的目的是同步连接双方的序列号和确认号并交换TCP窗口大小信息。

2.四次挥手

当客户端和服务器通过三次握手建立了TCP连接以后,当数据传送完毕,肯定是要断开TCP连接的啊。那对于TCP的断开连接,这里就有了神秘的“四次分手”。

9.TCP流量控制

如果发送方把数据发送得过快,接收方可能会来不及接收,这就会造成数据的丢失。所谓流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。

利用滑动窗口机制可以很方便地在TCP连接上实现对发送方的流量控制。

设A向B发送数据。在连接建立时,B告诉了A:“我的接收窗口是rwnd = 400”(这里的rwnd表示receiver window)。因此,发送方的发送窗口不能超过接收方给出的接收窗口的数值。请注意,TCP的窗口单位是字节,不是报文段。假设每一个报文段为100字节长,而数据报文段序号的初始值设为1。大写ACK表示首部中的确认位ACK,小写ack表示确认字段的值ack。

从图中可以看出,B进行了三次流量控制。第一次把窗口减少到rwnd = 300,第二次又减到了rwnd = 100,最后减到rwnd = 0,即不允许发送方再发送数据了。这种使发送方暂停发送的状态将持续到主机B重新发出一个新的窗口值为止。B向A发送的三个报文段都设置了ACK = 1,只有在ACK=1时确认号字段才有意义。

TCP为每一个连接设有一个持续计时器(persistence timer)。只要TCP连接的一方收到对方的零窗口通知,就启动持续计时器。若持续计时器设置的时间到期,就发送一个零窗口控测报文段(携1字节的数据),那么收到这个报文段的一方就重新设置持续计时器。

10.TCP拥塞控制

发送方维持一个拥塞窗口cwnd(congestion window)的状态变量。拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。发送方让自己的发送窗口等于拥塞窗口。

发送方控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口就再增大一些,以便把更多的分组发送出去。但只要网络出现拥塞,拥塞窗口就减小一些,以减少注入到网络中的分组数。

慢开始算法

当主机开始发送数据时,如果立即所大量数据字节注入到网络,那么就有可能引起网络拥塞,因为现在并不清楚网络的负荷情况。因此,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是说,由小到大逐渐增大拥塞窗口数值。

通常在刚刚开始发送报文段时,先把拥塞窗口cwnd设置为一个最大报文段MSS的数值。而在每收到一个对新的报文段的确认后,把拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送方的拥塞窗口cwnd,可以使分组注入到网络的速率更加合理。

每经过一个传输轮次,拥塞窗口cwnd就加倍。一个传输轮次所经历的时间其实就是往返时间RTT。不过“传输轮次”更加强调:把拥塞窗口cwnd所允许发送的报文段都连续发送出去,并收到了对已发送的最后一个字节的确认。

另,慢开始的“慢”并不是指cwnd的增长速率慢,而是指在TCP开始发送报文段时先设置cwnd=1,使得发送方在开始时只发送一个报文段(目的是试探一下网络的拥塞情况),然后再逐渐增大cwnd。

为了防止拥塞窗口cwnd增长过大引起网络拥塞,还需要设置一个慢开始门限ssthresh状态变量。慢开始门限ssthresh的用法如下:

  • 当cwnd < ssthresh时,使用上述的慢开始算法。
  • 当cwnd > ssthresh时,停止使用慢开始算法而改用拥塞避免算法。
  • 当cwnd = ssthresh时,既可使用慢开始算法,也可使用拥塞控制避免算法。

关于传知摩尔狮

传知摩尔狮是广州传知信息科技有限公司旗下针对阿里云认证及云网创立的数字人才培训品牌,传知摩尔狮成立于2019年,致力于传播领先的教育理论,倡导更有效、更高效的学习范式,在IT职业教育领域,研究相关学科的教材教法和教学资源的整合,通过自主研发的学习服务平台推动IT人才的学习和发展,致力为中国云计算行业培养数字化人才。

摩尔狮在秉持传播知识、成就未来的理念下,2021年8月与阿里云达成深度合作,成为阿里云认证的战略级培训伙伴。并且,摩尔狮已和超过200家的互联网厂家签署了就业合作协议,为企业与国家持续培养输送面向未来的应用型人才。

相关文章:

  • NEFU数字图像处理(3)图像分割
  • HarmonyOS开发:基于http开源一个网络请求库
  • 双热点机制结合。5+铜死亡+铁死亡相关基因生信思路
  • 求职中遇到的性格测试,你看不出来的陷阱
  • 【面试精选】00后卷王带你三天刷完软件测试面试八股文
  • 开源播放器GSYVideoPlayer的简单介绍及播放rtsp流的优化
  • Java零基础入门-注释
  • Mac PS2023/2024储存窗口黑屏不显示 解决方法
  • 【正则表达式】中的“\b“
  • 【计算系统】5分钟了解超算,高性能计算,并行计算,分布式计算,网格计算,集群计算以及云计算的区别
  • DQN强化学习
  • CentOS 7升级gcc/G++版本
  • 系列四、全局配置文件mybatis-config.xml
  • 【LLM】大语言模型高效微调方案Lora||直击底层逻辑
  • 箭头函数和普通函数有什么区别
  • [nginx文档翻译系列] 控制nginx
  • 4. 路由到控制器 - Laravel从零开始教程
  • Angular 响应式表单之下拉框
  • CSS3 变换
  • Elasticsearch 参考指南(升级前重新索引)
  • ERLANG 网工修炼笔记 ---- UDP
  • JavaScript 基本功--面试宝典
  • java中具有继承关系的类及其对象初始化顺序
  • OpenStack安装流程(juno版)- 添加网络服务(neutron)- controller节点
  • 阿里云Kubernetes容器服务上体验Knative
  • 阿里云容器服务区块链解决方案全新升级 支持Hyperledger Fabric v1.1
  • 当SetTimeout遇到了字符串
  • 如何使用 OAuth 2.0 将 LinkedIn 集成入 iOS 应用
  • 微信小程序上拉加载:onReachBottom详解+设置触发距离
  • 想使用 MongoDB ,你应该了解这8个方面!
  • 我们雇佣了一只大猴子...
  • #include<初见C语言之指针(5)>
  • #我与Java虚拟机的故事#连载14:挑战高薪面试必看
  • (8)Linux使用C语言读取proc/stat等cpu使用数据
  • (TipsTricks)用客户端模板精简JavaScript代码
  • (附源码)计算机毕业设计SSM疫情下的学生出入管理系统
  • (介绍与使用)物联网NodeMCUESP8266(ESP-12F)连接新版onenet mqtt协议实现上传数据(温湿度)和下发指令(控制LED灯)
  • (一)Dubbo快速入门、介绍、使用
  • (一)pytest自动化测试框架之生成测试报告(mac系统)
  • (一)硬件制作--从零开始自制linux掌上电脑(F1C200S) <嵌入式项目>
  • (自适应手机端)响应式新闻博客知识类pbootcms网站模板 自媒体运营博客网站源码下载
  • *_zh_CN.properties 国际化资源文件 struts 防乱码等
  • .NET delegate 委托 、 Event 事件,接口回调
  • .NET Framework 的 bug?try-catch-when 中如果 when 语句抛出异常,程序将彻底崩溃
  • .NET/C# 获取一个正在运行的进程的命令行参数
  • .NET/C# 使用 ConditionalWeakTable 附加字段(CLR 版本的附加属性,也可用用来当作弱引用字典 WeakDictionary)
  • .NET中两种OCR方式对比
  • /bin/bash^M: bad interpreter: No such file or directory
  • /etc/apt/sources.list 和 /etc/apt/sources.list.d
  • @test注解_Spring 自定义注解你了解过吗?
  • @拔赤:Web前端开发十日谈
  • [20181219]script使用小技巧.txt
  • [2021]Zookeeper getAcl命令未授权访问漏洞概述与解决
  • [AutoSar]BSW_Com02 PDU详解
  • [AutoSar]状态管理(五)Dcm与BswM、EcuM的复位实现