当前位置: 首页 > news >正文

【机器学习基础】对数几率回归(logistic回归)

🚀个人主页:为梦而生~ 关注我一起学习吧!
💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~
💡往期推荐
【机器学习基础】机器学习入门(1)
【机器学习基础】机器学习入门(2)
【机器学习基础】机器学习的基本术语
【机器学习基础】机器学习的模型评估(评估方法及性能度量原理及主要公式)
【机器学习基础】一元线性回归(适合初学者的保姆级文章)
【机器学习基础】多元线性回归(适合初学者的保姆级文章)
💡本期内容:Logistic回归和对数几率回归是同一个模型,是统计学习中的经典分类方法,属于对数线性模型。上一节讨论了如何使用线性模型进行回归学习,但若要做的是分类任务该怎么办?答案蕴涵在线性回归广义线性模型(假设函数)中:只需找一个单调可微函数将分类任务的真实标记y与线性回归模型的预测值联系起来。超级基础的文章,赶紧收藏学习吧!!!


文章目录

  • 1 什么是对数几率回归
  • 2 假设函数
  • 3 决策边界
  • 4 代价函数
    • 4.1 与线性回归模型的区别
    • 4.2 重新定义代价函数
  • 5 如何处理多分类问题
    • 5.1 一对多法(one-versus-rest,简称OVR SVMs)
    • 5.2 一对一的投票策略(One-vs-one)


1 什么是对数几率回归

对数几率回归,也称为逻辑回归,是一种广义线性模型。在逻辑回归中,通过使用sigmoid函数,将线性回归的输出映射到0和1之间,表示样本属于某一类的概率。所以它属于分类模型

逻辑回归模型的训练通常通过最大化似然函数来完成,常用的解决方法是使用梯度下降算法进行模型优化,通过迭代调整模型参数,使得模型的预测结果逐渐接近实际标签。

逻辑回归可以表示为一个关于θ的函数hθ(x),即hθ(x) = P(y=1|x;θ),表示给定特征x和参数θ的条件下,样本属于正例的概率。

由于它属于一个分类模型,所以它的输出应该具有分类的性质,于是,这里规定其输出永远在0,1之间。
在这里插入图片描述


2 假设函数

考虑二分类任务,其输出标记 y∈{0, 1},而线性回归模型产生的预测值 h θ ( x ) h_{\theta }(x) hθ(x)是实值,于是,我们需将实值 z z z转换为 0/1值最理想的是“单位阶跃函数”(unit-step function)

在这里插入图片描述

但阶跃函数并不连续,于是我们希望找到能在一定程度上近似单位阶跃函数的“替代函数”(surrogate function),并希望它单调可微对数几率函数(logistic function)正是这样一个常用的替代函数:
在这里插入图片描述

那么对数几率回归的假设函数应该将输出控制到0~1之间,于是就有了大名鼎鼎的sigmoid函数
在这里插入图片描述

  • 对于假设函数在对数几率回归的解释

h θ ( x ) h_{\theta }(x) hθ(x)的作用是:对于给定的输入变量,根据选择的参数计算输出变量=1的可能性。即 h θ ( x ) h_{\theta }(x) hθ(x)带有一定的概率含义。

例如,对于给定的x,通过已知的参数计算出 h θ = 0.7 h_{\theta }=0.7 hθ=0.7,则表示有70%的概率y为正例.

若将 y y y视为样本 x x x作为正例的可能性,则 1 − y 1-y 1y 是其反例可能性,两者的比值 y 1 − y \frac{y}{1-y} 1yy称为"几率" (odds) ,反映了 x x x作为正例的相对可能性. 对几率取对数则得到"对数几率" (log odds ,亦称 logit)
在这里插入图片描述

由此可看出,式(3.18) 实际上是在用线性回归模型的预测结果去逼近真实标记的对数几率,因此,其对应的模型称为"对数几率回归" (logistic regression ,亦称 logit regression) .


3 决策边界

在对数几率回归中,我们预测:

当hθ(x)>=0.5
时,预测y=1.

当hθ(x)<0.5
时,预测y=0.
在这里插入图片描述

根据上面绘制的图像,我们知道:

当z>=0时,g(z)>=0.5

当z<0时,g(z)<0.5

  • 举个例子

当参数 θ \theta θ是向量 [ − 3 , 1 , 1 ] [-3,1,1] [3,1,1]。 则当 − 3 + x 1 + x 2 = 0 -3 +x_1+x_2= 0 3+x1+x2=0时,模型将预测 y=1。我们可以绘制这条线便是我们模型的分界线,将预测为 1 的区域和预测为 0 的区域分隔开.
在这里插入图片描述
换句话说,大于这条线的部分预测y=0,小于这条线的部分预测y=0. 这条线就叫做决策边界


4 代价函数

4.1 与线性回归模型的区别

对于线性回归,我们知道它的代价函数为 J ( θ ) = 1 2 m Σ i = 1 m ( h θ x ( i ) − y ( i ) ) 2 J(\theta )=\frac{1}{2m}\Sigma _{i=1}^{m}(h_{\theta }x^{(i)}-y^{(i)})^{2} J(θ)=2m1Σi=1m(hθx(i)y(i))2, 我们可以对其进行梯度下降求最小值。其中可以用梯度下降最根本的原因在于它是一个凸函数,如下图所示
在这里插入图片描述
在逻辑回归中,如果还用和线性回归一样的代价函数的话,是求不到全局的最小值的,只能求到局部的最小值。这是因为,逻辑回归的假设函数变成了 h θ ( x ) = g ( θ T x ) = g ( z ) = 1 1 + e − z = 1 1 + e − θ T x h_{\theta }(x)=g(\theta ^{T}x)=g(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{-\theta ^{T}x}} hθ(x)=g(θTx)=g(z)=1+ez1=1+eθTx1,将其带入上面的代价函数,可得到它的图像为:
在这里插入图片描述
由此我们知道,我们需要重新定义逻辑回归的代价函数。且这个代价函数一定是一个凸函数,否则不方便使用梯度下降求最小值

4.2 重新定义代价函数

这里我们定义新的代价函数为:
J ( θ ) = 1 m Σ i = 1 m c o s t ( h θ ( x ( i ) ) , y ( i ) ) J(\theta )=\frac{1}{m}\Sigma _{i=1}^{m}cost(h_{\theta }(x^{(i)}),y^{(i)}) J(θ)=m1Σi=1mcost(hθ(x(i)),y(i))

在这里插入图片描述
这样分条件构建代价函数,可以使得当实际的 𝑦 = 1 且ℎ𝜃(𝑥)也为 1 时误差为 0, 当 𝑦 = 1 但ℎ𝜃(𝑥)不为 1 时误差随着ℎ𝜃(𝑥)变小而变大;当实际的 𝑦 = 0 且ℎ𝜃(𝑥)也为 0 时 代价为 0,当𝑦 = 0 但ℎ𝜃(𝑥)不为 0 时误差随着 ℎ𝜃(𝑥)的变大而变大。
由此可以保证它的输出用于分类

对其进行化简:
在这里插入图片描述

在得到这样一个代价函数以后,我们便可以用梯度下降法来求得代价函数取最小值时的参数了。方法和前面的线性回归求梯度下降差不多。
在这里插入图片描述


5 如何处理多分类问题

现实生活中,我们遇到的问题往往是很多类别的东西需要分类,所以如何利用二分类的模型解决多分类问题呢?
在这里插入图片描述

5.1 一对多法(one-versus-rest,简称OVR SVMs)

训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。

假如我有四类要划分(也就是4个Label),他们是A、B、C、D。
于是我在抽取训练集的时候,分别抽取

  1. A所对应的向量作为正集,B,C,D所对应的向量作为负集;
  2. B所对应的向量作为正集,A,C,D所对应的向量作为负集;
  3. C所对应的向量作为正集,A,B,D所对应的向量作为负集;
  4. D所对应的向量作为正集,A,B,C所对应的向量作为负集;

在这里插入图片描述

使用这四个训练集分别进行训练,然后的得到四个训练结果文件。在测试的时候,把对应的测试向量分别利用这四个训练结果文件进行测试。最后每个测试都有一个结果f1(x),f2(x),f3(x),f4(x)。
于是最终的结果便是这四个值中最大的一个作为分类结果

  • 评价

这种方法有种缺陷,因为训练集是1:M,这种情况下存在biased.因而不是很实用可以在抽取数据集的时候,从完整的负集中再抽取三分之一作为训练负集

5.2 一对一的投票策略(One-vs-one)

分类器的选择

  • 将A、 B、C、 D四类样本两类两类地组成训练集, 即(A,B)、(A.C)、(A,D)、(B,C)、(B,D)、(C,D), 得到6个(对于n类问题,为n(n-1)/2个)SVM二分器。
  • 在测试的时候,把测试样本又依次送入这6个二分类器, 采取投票形式, 最后得到一组结果。

投票是以如下方式进行的

  • 初始化:vote(A)= vote(B)= vote( C )= vote(D)=0。

  • 投票过程
    (1)如果使用训练集(A,B)得到的分类器将一个测试样本判定为A类,则vote(A)=vote(A)+1 ,否则vote(B)=vote(B)+ 1;
    (2)如果使用(A,C)训练的分类器将又判定为A类,则vote(A)=vote(A)+1, 否则vote( C )=vote( C )+1;
    (3)… ;
    (4)如果使用(C,D)训练的分类器将又判定为C类,则vote( C )=vote( C )+ 1 , 否则vote(D)=vote(D)+ 1。
    在这里插入图片描述

  • 最终判决
    Max(vote(A), vote(B), vote( C ), vote(D))
    如有两个以上的最大值,则一般可简单地取第一个最大值所对应的类

相关文章:

  • elementplus DateTimePicker 日期范围选择器 设置默认时间范围为当前月的起始时间到结束时间
  • pytorch下载离线包的网址
  • 设置指定时间之前的时间不可选
  • kubernetes测试部署一个nginx
  • 【自学记录】深度学习进阶:自然语言处理(第一章 神经网络的复习)
  • Linux 启动停止重启jar包shell脚本
  • 【2023云栖】陈守元:阿里云开源大数据产品年度发布
  • 【数据库】你听说过矢量数据库吗?
  • 机器学习算法——集成学习
  • Vue项目Jenkins自动化部署
  • Golang中读写CSV文件的全面指南
  • 鸿蒙原生应用/元服务开发-AGC分发如何编译打包应用
  • qt和window抓包程序
  • RK3588产测软件介绍
  • kafka原理看这一篇就够了
  • Java IO学习笔记一
  • LeetCode刷题——29. Divide Two Integers(Part 1靠自己)
  • maya建模与骨骼动画快速实现人工鱼
  • Mysql数据库的条件查询语句
  • Promise面试题,控制异步流程
  • vue从入门到进阶:计算属性computed与侦听器watch(三)
  • Vue全家桶实现一个Web App
  • Vue实战(四)登录/注册页的实现
  • 回顾 Swift 多平台移植进度 #2
  • 理解在java “”i=i++;”所发生的事情
  • 带你开发类似Pokemon Go的AR游戏
  • 继 XDL 之后,阿里妈妈开源大规模分布式图表征学习框架 Euler ...
  • ​Base64转换成图片,android studio build乱码,找不到okio.ByteString接腾讯人脸识别
  • ​软考-高级-系统架构设计师教程(清华第2版)【第1章-绪论-思维导图】​
  • ###C语言程序设计-----C语言学习(6)#
  • #ubuntu# #git# repository git config --global --add safe.directory
  • (C语言)字符分类函数
  • (day6) 319. 灯泡开关
  • (安全基本功)磁盘MBR,分区表,活动分区,引导扇区。。。详解与区别
  • (多级缓存)缓存同步
  • (附源码)springboot猪场管理系统 毕业设计 160901
  • (剑指Offer)面试题34:丑数
  • (论文阅读40-45)图像描述1
  • (免费分享)基于springboot,vue疗养中心管理系统
  • (十三)Java springcloud B2B2C o2o多用户商城 springcloud架构 - SSO单点登录之OAuth2.0 根据token获取用户信息(4)...
  • (转)从零实现3D图像引擎:(8)参数化直线与3D平面函数库
  • (转)负载均衡,回话保持,cookie
  • (轉)JSON.stringify 语法实例讲解
  • *++p:p先自+,然后*p,最终为3 ++*p:先*p,即arr[0]=1,然后再++,最终为2 *p++:值为arr[0],即1,该语句执行完毕后,p指向arr[1]
  • *Django中的Ajax 纯js的书写样式1
  • .NET 8 编写 LiteDB vs SQLite 数据库 CRUD 接口性能测试(准备篇)
  • .NET CF命令行调试器MDbg入门(三) 进程控制
  • .net core webapi 部署iis_一键部署VS插件:让.NET开发者更幸福
  • .NET Core WebAPI中封装Swagger配置
  • .net mvc 获取url中controller和action
  • .net6Api后台+uniapp导出Excel
  • .NET简谈设计模式之(单件模式)
  • .Net面试题4
  • 。Net下Windows服务程序开发疑惑
  • @column注解_MyBatis注解开发 -MyBatis(15)