当前位置: 首页 > news >正文

TensorRT模型优化模型部署(七)--Quantization量化(PTQ and QAT)(二)

系列文章目录

第一章 TensorRT优化部署(一)–TensorRT和ONNX基础
第二章 TensorRT优化部署(二)–剖析ONNX架构
第三章 TensorRT优化部署(三)–ONNX注册算子
第四章 TensorRT模型优化部署(四)–Roofline model
第五章 TensorRT模型优化部署(五)–模型优化部署重点注意
第六章 TensorRT模型优化部署(六)–Quantization量化基础(一)
第七章 TensorRT模型优化模型部署(七)–Quantization量化(PTQ and QAT)(二)


文章目录

  • 系列文章目录
  • 前言
  • 一、(PTQ and quantization-analysis)
    • 1.1 PTQ 优缺点
    • 1.2 量化中的sensitive analysis
    • 1.2 Polygraphy
    • 1.3 FP16/INT8对计算资源的利用
  • 二、Quantization(QAT and kernel-fusion)
    • 1.Q/DQ是什么
    • 2.量化流程
  • 总结


前言

理解PTQ和QAT的区别,以及PTQ的优缺点和layer-wise sensitive analysis


一、(PTQ and quantization-analysis)

根据量化的时机,一般我们会把量化分为
• PTQ(Post-Training Quantization),训练后量化
• QAT(Quantization-Aware Training),训练时量化

在这里插入图片描述

PTQ一般是指对于训练好的模型,通过calibration算法等来获取dynamic range来进行量化。
但量化普遍上会产生精度下降。所以QAT为了弥补精度下降,在学习过程中通过Fine-tuning权
重来适应这种误差,实现精度下降的最小化。所以一般来讲,QAT的精度会高于PTQ。但并不
绝对。

1.1 PTQ 优缺点

PTQ(Post-training quantization)也被称作隐式量化(implicit quantization)。我们并不显式的
对算子添加量化节点(Q/DQ),calibration之后TensorRT根据情况进行量化。

优点
• 方便使用,不需要训练。可以在部署设备上直接跑
缺点

  1. 精度下降
    • 量化过程会导致精度下降。但PTQ没有类似于QAT这种fine-tuning的过程。所以权重不会更
    新来吸收这种误差
  2. 量化不可控
    • TensorRT会权衡量化后所产生的新添的计算或者访存, 是否用INT8还是FP16。
    • TensorRT中的kernel autotuning会选择核函数来做FP16/INT8的计算。来查看是否在CUDA
    core上跑还是在Tensor core上跑
    • 有可能FP16是在Tensor core上,但转为INT8之后就在CUDA core上了
  3. 层融合问题
    • 量化后有可能出现之前可以融合的层,不能融合了
    • 量化会添加reformatter这种更改tensor的格式的算子,如果本来融合的两个算子间添加了这
    个就不能被融合了
    • 比如有些算子支持int8,但某些不支持。之前可以融合的,但因为精度不同不能融合了

如果INT8量化后速度反而会比FP16/FP32要慢,我们可以从以上的2和3去分析并排查原因

1.2 量化中的sensitive analysis

从精度分析的角度去弥补PTQ的精度下降,我们可以进行layer-wise的量化分析。这种方法被称
作layer-wise sensitive analysis。每层对模型的重要度比例是不一样的,普遍来讲,模型框架中会有一些层的量化对精度的影响比较大。我们管它们叫做敏感层(sensitive layer)。对于这些敏感层的量化我们需要非常小心。尽量用FP16。敏感层一般靠近模型的输入输出

在这里插入图片描述

在这里插入图片描述

1.2 Polygraphy

Polygraphy 是英伟达推出的一款工具,用于可视化和分析深度学习模型的性能和效果。可以分析并查找模型精度下降并且影响比较大的地方

• onnxruntime与TensorRT engine的layer-wise的精度分析
• 输出每一层layer的权重histogram
• 截取影响整个网络中对精度影响最大的子网,并使用onnx-surgeon单独拿出来

在这里插入图片描述
跑一下Onnx模型再跑一下trt模型,两个模型对比,看激活值差别大概有多大,如果有一个层某个层精度下降比较大就会报错,然后把它取出来。

具体查看官方文档:https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy#examples

1.3 FP16/INT8对计算资源的利用

在做量化后,我们无法指定将量化后的conv或者gemm放在Tensor core还是在CUDA core上计算。这些是TensorRT在帮我们选择核函数的时候自动完成的。查看是否在用Tensor core可以通过下面三个办法

• 使用dlprof
• 使用nsight system
• 使用trtexec

DLProf
DLProf (Deep learning Profiler)工具可以把模型在GPU上的执行情况以TensorBoard的形式打印出来,分析TensorCore的使用情况。DLProf不支持Jetson系列的Profile。对于Jetson,我们可以使用Nsight system或者trtexec。具体查看官方文档:https://developer.nvidia.com/blog/profiling-and-optimizing-deep-neural-networks-with-dlprof-and-pyprof/

Nsight System/trtexec
如果是利用Nsight system的话,我们可以查看到哪一个kernel的时间占用率最高,之后从kernel的名字取推测这个kernel是否在用Tensor Core。
eg:

• h884 = HMMA = FP16 TensorCore
• i8816 = IMMA = INT8 TensorCore
• hcudnn = FP16 normal CUDA kernel (without TensorCore)
• icudnn = INT8 normal CUDA kernel (without TensorCore)
• scudnn = FP32 normal CUDA kernel (without TensorCore)

HMMA: Half-precision matrix multiply and accumulate
Nsight System/trtexec IMMA: Int-precision matrix multiply and accumulate

二、Quantization(QAT and kernel-fusion)

QAT(Quantization Aware Training)也被称作显式量化。我们明确的在模型中添加Q/DQ节点
(量化/反量化),来控制某一个算子的精度。并且通过fine-tuning来更新模型权重,让权重学习
并适应量化带来的精度误差。QAT的核心就是通过添加fake quantization,也就是Q/DQ节点,来模拟量化过程

1.Q/DQ是什么

Q/DQ node也被称作fake quantization node,是用来模拟fp32->int8的量化的scale和
shift(zero-point),以及int8->fp32的反量化的scale和shift(zero-point)。QAT通过Q和DQ
node里面存储的信息对fp32或者int8进行线性变换。
在这里插入图片描述

TensorRT对包含Q/DQ节点的onnx模型使用很多图优化,从而提高计算效率。主要分为
• Q/DQ fusion
通过层融合,将Q/DQ中的线性计算与conv或者linear这种线性计算融合在一起,实现int8计算
• Q/DQ Propagation
将Q节点尽量往前挪,将DQ节点尽量往后挪,让网络中int8计算的部分变得更长
在这里插入图片描述
在这里插入图片描述
QAT的学习过程
• 主要是训练weight来学习误差
Q/DQ中的scale和zero-point也是可以训练的。通过训练来学习最好的scale来表示dynamic range
• 没有PTQ中那样人为的指定calibration过程
不是因为没有calibration这个过程来做histogram的统计,而是因为QAT会利用fine-tuning的数
据集在训练的过程中同时进行calibration,这个过程是我们看不见的。这就是为什么我们在
pytorch创建QAT模型的时候需要选定calibration algorithm。

pytorch支持对已经训练好的模型自动添加Q/DQ节点。详细可以参考https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization

2.量化流程

  1. 先进行PTQ
    从多种calibration策略中选取最佳的算法,查看是否精度满足,如果不行再下一步。
  2. 进行partial-quantization
    通过layer-wise的sensitve analysis分析每一层的精度损失,尝试fp16 + int8的组合;fp16用在敏感层(网络入口和出口),int8用在计算密集处(网络的中间),查看是否精度满足,如果不行再下一步。(注意,这里同时也需要查看计算效率是否得到满足)
  3. 进行QAT来通过学习权重来适应误差
    选取PTQ实验中得到的最佳的calibration算法,通过fine-tuning来训练权重(大概是原本训练的10%个epoch),查看是否精度满足,如果不行查看模型设计是否有问题。(注意,这里同时也需要查看层融合是否被适用,以及Tensor core是否被用)

总结

下节介绍channel-level pruning的算法,以及如何使用L1-Norm来让权重稀疏

相关文章:

  • 观成科技-加密C2框架EvilOSX流量分析
  • Rustdesk打开Win10 下客户端下面服务不会自启,显示服务未运行
  • ros2+gazebo(ign)激光雷达+摄像头模拟
  • R语言【base】——tempfile():返回一个字符串向量,这些字符串可以用作临时文件的名称
  • Three.js 纹理贴图的实现
  • 医院患者满意度调查方案
  • Servlet-体系结构
  • 开关电源PFC电路原理详解及matlab仿真
  • 聊聊 Java 集合框架中的 ArrayList
  • 全新加密叙事,以Solmash为代表的 LaunchPad 平台如何为用户赋能?
  • uniapp 打包成 apk(原生APP-云打包)免费
  • 软件测试|Python数据可视化神器——pyecharts教程(九)
  • 确保CentOS系统中的静态HTTP服务器的数据安全
  • 深入了解Java多线程编程:JVM内存模型与同步机制
  • Linux学习记录——사십이 高级IO(3)--- Poll型服务器
  • 〔开发系列〕一次关于小程序开发的深度总结
  • centos安装java运行环境jdk+tomcat
  • co模块的前端实现
  • Django 博客开发教程 16 - 统计文章阅读量
  • ES学习笔记(12)--Symbol
  • exif信息对照
  • Git 使用集
  • Github访问慢解决办法
  • MySQL的数据类型
  • PAT A1017 优先队列
  • Spark VS Hadoop:两大大数据分析系统深度解读
  • springboot_database项目介绍
  • thinkphp5.1 easywechat4 微信第三方开放平台
  • Transformer-XL: Unleashing the Potential of Attention Models
  • ucore操作系统实验笔记 - 重新理解中断
  • weex踩坑之旅第一弹 ~ 搭建具有入口文件的weex脚手架
  • 简单基于spring的redis配置(单机和集群模式)
  • 前端技术周刊 2019-01-14:客户端存储
  • 前端学习笔记之原型——一张图说明`prototype`和`__proto__`的区别
  • 使用 QuickBI 搭建酷炫可视化分析
  • 【运维趟坑回忆录 开篇】初入初创, 一脸懵
  • 阿里云ACE认证学习知识点梳理
  • 通过调用文摘列表API获取文摘
  • ​LeetCode解法汇总2304. 网格中的最小路径代价
  • ​RecSys 2022 | 面向人岗匹配的双向选择偏好建模
  • ​第20课 在Android Native开发中加入新的C++类
  • ​如何防止网络攻击?
  • !!Dom4j 学习笔记
  • # include “ “ 和 # include < >两者的区别
  • # 执行时间 统计mysql_一文说尽 MySQL 优化原理
  • #Java第九次作业--输入输出流和文件操作
  • #NOIP 2014#Day.2 T3 解方程
  • #stm32整理(一)flash读写
  • %check_box% in rails :coditions={:has_many , :through}
  • (1)安装hadoop之虚拟机准备(配置IP与主机名)
  • (C++17) std算法之执行策略 execution
  • (NO.00004)iOS实现打砖块游戏(十二):伸缩自如,我是如意金箍棒(上)!
  • (zhuan) 一些RL的文献(及笔记)
  • (超详细)语音信号处理之特征提取
  • (附源码)ssm智慧社区管理系统 毕业设计 101635