当前位置: 首页 > news >正文

互联网加竞赛 基于计算机视觉的身份证识别系统

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于机器视觉的身份证识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现方法

1.1 原理

1.1.1 字符定位

在Android移动端摄像头拍摄的图片是彩色图像,上传到服务器后为了读取到身份证上的主要信息,就要去除其他无关的元素,因此对身份证图像取得它的灰度图并得到二值化图。

对身份证图像的的二值化有利于对图像内的信息的进一步处理,可以将待识别的信息更加突出。在OpenCV中,提供了读入图像接口函数imread,
首先通过imread将身份证图像读入内存中:


id_card_img = cv2.imread(path_img)

之后再调用转化为灰度图的接口函数cvtColor并给它传入参数COLOR_BGR2GRAY,它就可以实现彩色图到灰度图的转换,代码如下


gray_id_card_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2GRAY)
preprocess_bg_mask = PreprocessBackgroundMask(boundary)

转化为二值化的灰度图后图像如图所示:

在这里插入图片描述

转换成灰度图之后要进行字符定位,通过每一行进行垂直投影,就可以找到所有字段的位置,具体如下:

在这里插入图片描述
然后根据像素点起始位置,确定字符区域,然后将字符区域一一对应放入存放字符的列表中:

 vertical_peek_ranges = extract_peek_ranges_from_array(vertical_sum,minimun_val=40,minimun_range=1)vertical_peek_ranges2d.append(vertical_peek_ranges)

最后的效果图如图所示:

在这里插入图片描述

1.1.2 字符识别

身份证识别中,最重要的是能够识别身份证图像中的中文文字(包括数字和英文字母),这里学长采用深度学习的方式来做:

1)身份证图像涉及个人隐私,很难获取其数据训练集。针对此问题,我采用获取身份证上印刷体汉字和数字的数据训练集的方法,利用Python图像库(PIL)将13类汉字印刷体字体转换成6492个类别,建立了较大的字符训练集;

2)如何获取身份证图片上的字符是在设计中一个重要问题。我采用水平和垂直投影技术,首先对身份证图像进行预处理,然后对图片在水平和垂直方向上像素求和,区分字符与空白区域,完成了身份证图像中字符定位与分割工作,有很好的切分效果;

3)在模型训练中模型的选择与设计是一个重要的环节,本文选择Lenet模型,发现模型层次太浅,然后增加卷积层和池化层,设计出了改进的深层Lenet模型,然后采用Caffe深度学习工具对模型进行训练,并在训练好的模型上进行测试,实验表明,模型的测试精度达到96.2%。

1.1.3 深度学习算法介绍

深度学习技术被提出后,发展迅速,在人工智能领域取得了很好的成绩,越来越多优秀的神经网络也应运而生。深度学习通过建立多个隐层的深层次网络结构,比如卷积神经网络,可以用来研究并处理目前计算机视觉领域的一些热门的问题,如图像识别和图像检索。

深度学习建立从输入数据层到高层输出层语义的映射关系,免去了人工提取特征的步骤,建立了类似人脑神经网的分层模型结构。深度学习的示意图如图所示

在这里插入图片描述

1.1.4 模型选择

在进行网络训练前另一项关键的任务是模型的选择与配置,因为要保证模型的精度,要选一个适合本文身份证信息识别的网络模型。


首先因为汉字识别相当于一个类别很多的图片分类系统,所以先考虑深层的网络模型,优先采用Alexnet网络模型,对于汉字识别这种千分类的问题很合适,但是在具体实施时发现本文获取到的数据训练集每张图片都是6464大小的一通道的灰度图,而Alexnet的输入规格是224224三通道的RGB图像,在输入上不匹配,并且Alexnet在处理像素较高的图片时效果好,用在本文的训练中显然不合适。

其次是Lenet模型,没有改进的Lenet是一个浅层网络模型,如今利用这个模型对手写数字识别精度达到99%以上,效果很好,在实验时我利用在Caffe下的draw_net.py脚本并且用到pydot库来绘制Lenet的网络模型图,实验中绘制的原始Lenet网络模型图如图所示,图中有两个卷积层和两个池化层,网络层次比较浅。

在这里插入图片描述

2 算法流程

在这里插入图片描述

3 部分关键代码

cv2_color_img = cv2.imread(test_image)##放大图片resize_keep_ratio = PreprocessResizeKeepRatio(1024, 1024)cv2_color_img = resize_keep_ratio.do(cv2_color_img)    ##转换成灰度图cv2_img = cv2.cvtColor(cv2_color_img, cv2.COLOR_RGB2GRAY)height, width = cv2_img.shape##二值化  调整自适应阈值 使得图像的像素值更单一、图像更简单adaptive_threshold = cv2.adaptiveThreshold(cv2_img, ##原始图像255,     ##像素值上限cv2.ADAPTIVE_THRESH_GAUSSIAN_C,  ##指定自适应方法Adaptive Method,这里表示领域内像素点加权和cv2.THRESH_BINARY,  ##赋值方法(二值化)11,  ## 规定领域大小(一个正方形的领域)2)   ## 常数C,阈值等于均值或者加权值减去这个常数adaptive_threshold = 255 - adaptive_threshold## 水平方向求和,找到行间隙和字符所在行(numpy)horizontal_sum = np.sum(adaptive_threshold, axis=1)## 根据求和结果获取字符行范围peek_ranges = extract_peek_ranges_from_array(horizontal_sum)vertical_peek_ranges2d = []for peek_range in peek_ranges:start_y = peek_range[0]  ##起始位置end_y = peek_range[1]    ##结束位置line_img = adaptive_threshold[start_y:end_y, :]## 垂直方向求和,分割每一行的每个字符vertical_sum = np.sum(line_img, axis=0)## 根据求和结果获取字符行范围vertical_peek_ranges = extract_peek_ranges_from_array(vertical_sum,minimun_val=40, ## 设最小和为40minimun_range=1)  ## 字符最小范围为1## 开始切割字符vertical_peek_ranges = median_split_ranges(vertical_peek_ranges)## 存放入数组中vertical_peek_ranges2d.append(vertical_peek_ranges)## 去除噪音,主要排除杂质,小的曝光点不是字符的部分filtered_vertical_peek_ranges2d = []for i, peek_range in enumerate(peek_ranges):new_peek_range = []median_w = compute_median_w_from_ranges(vertical_peek_ranges2d[i])for vertical_range in vertical_peek_ranges2d[i]:## 选取水平区域内的字符,当字符与字符间的间距大于0.7倍的median_w,说明是字符if vertical_range[1] - vertical_range[0] > median_w*0.7:new_peek_range.append(vertical_range)filtered_vertical_peek_ranges2d.append(new_peek_range)vertical_peek_ranges2d = filtered_vertical_peek_ranges2dchar_imgs = []crop_zeros = PreprocessCropZeros()resize_keep_ratio = PreprocessResizeKeepRatioFillBG(norm_width, norm_height, fill_bg=False, margin=4)for i, peek_range in enumerate(peek_ranges):for vertical_range in vertical_peek_ranges2d[i]:## 划定字符的上下左右边界区域x = vertical_range[0]y = peek_range[0]w = vertical_range[1] - xh = peek_range[1] - y## 生成二值化图char_img = adaptive_threshold[y:y+h+1, x:x+w+1]## 输出二值化图char_img = crop_zeros.do(char_img)char_img = resize_keep_ratio.do(char_img)## 加入字符图片列表中char_imgs.append(char_img)## 将列表转换为数组np_char_imgs = np.asarray(char_imgs)## 放入模型中识别并返回结果output_tag_to_max_proba = caffe_cls.predict_cv2_imgs(np_char_imgs)ocr_res = ""## 读取结果并展示for item in output_tag_to_max_proba:ocr_res += item[0][0]print(ocr_res.encode("utf-8"))## 生成一些Debug过程产生的图片if debug_dir is not None:path_adaptive_threshold = os.path.join(debug_dir,"adaptive_threshold.jpg")cv2.imwrite(path_adaptive_threshold, adaptive_threshold)seg_adaptive_threshold = cv2_color_img#        color = (255, 0, 0)#        for rect in rects:#            x, y, w, h = rect#            pt1 = (x, y)#            pt2 = (x + w, y + h)#            cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)color = (0, 255, 0)for i, peek_range in enumerate(peek_ranges):for vertical_range in vertical_peek_ranges2d[i]:x = vertical_range[0]y = peek_range[0]w = vertical_range[1] - xh = peek_range[1] - ypt1 = (x, y)pt2 = (x + w, y + h)cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)path_seg_adaptive_threshold = os.path.join(debug_dir,"seg_adaptive_threshold.jpg")cv2.imwrite(path_seg_adaptive_threshold, seg_adaptive_threshold)debug_dir_chars = os.path.join(debug_dir, "chars")os.makedirs(debug_dir_chars)for i, char_img in enumerate(char_imgs):path_char = os.path.join(debug_dir_chars, "%d.jpg" % i)cv2.imwrite(path_char, char_img)

4 效果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

  • 前端工程化面试题 | 11.精选前端工程化高频面试题
  • Ubuntu忘记登录密码重置步骤
  • 使用 Spring Data JPA 和 Mybatis 结合的方式进行分页查询
  • 1414 - 期末考试成绩排名
  • 【分享】JLINK的SW调试模式连线方式
  • 【深度学习】S2 数学基础 P4 概率论
  • uniapp如何给视频组件设置图片
  • leetcode135. 分发糖果
  • 6、内网安全-横向移动WmiSmbCrackMapExecProxyChainsImpacket
  • C语言指针(初阶)
  • Docker 第十四章 : Docker 三剑客之 Machine
  • STM32 寄存器操作 GPIO 与下降沿中断
  • 论文阅读:四足机器人对抗运动先验学习稳健和敏捷的行走
  • #免费 苹果M系芯片Macbook电脑MacOS使用Bash脚本写入(读写)NTFS硬盘教程
  • Simulink模块说明
  • 【Leetcode】104. 二叉树的最大深度
  • 【译】React性能工程(下) -- 深入研究React性能调试
  • 【跃迁之路】【699天】程序员高效学习方法论探索系列(实验阶段456-2019.1.19)...
  • 2017 年终总结 —— 在路上
  • gcc介绍及安装
  • Idea+maven+scala构建包并在spark on yarn 运行
  • jdbc就是这么简单
  • Mac转Windows的拯救指南
  • Mysql5.6主从复制
  • ng6--错误信息小结(持续更新)
  • Redis的resp协议
  • select2 取值 遍历 设置默认值
  • SSH 免密登录
  • Webpack 4x 之路 ( 四 )
  • 多线程 start 和 run 方法到底有什么区别?
  • 和 || 运算
  • 前端攻城师
  • 适配iPhoneX、iPhoneXs、iPhoneXs Max、iPhoneXr 屏幕尺寸及安全区域
  • 手机app有了短信验证码还有没必要有图片验证码?
  • 微服务框架lagom
  • 微信小程序上拉加载:onReachBottom详解+设置触发距离
  • - 语言经验 - 《c++的高性能内存管理库tcmalloc和jemalloc》
  • 智能合约开发环境搭建及Hello World合约
  • [地铁译]使用SSD缓存应用数据——Moneta项目: 低成本优化的下一代EVCache ...
  • SAP CRM里Lead通过工作流自动创建Opportunity的原理讲解 ...
  • 大数据全解:定义、价值及挑战
  • ​ 全球云科技基础设施:亚马逊云科技的海外服务器网络如何演进
  • # centos7下FFmpeg环境部署记录
  • #Linux(帮助手册)
  • #pragma once与条件编译
  • #控制台大学课堂点名问题_课堂随机点名
  • (04)Hive的相关概念——order by 、sort by、distribute by 、cluster by
  • (2015)JS ES6 必知的十个 特性
  • (4)logging(日志模块)
  • (C++17) optional的使用
  • (Mirage系列之二)VMware Horizon Mirage的经典用户用例及真实案例分析
  • (Note)C++中的继承方式
  • (多级缓存)多级缓存
  • (附源码)计算机毕业设计SSM在线影视购票系统
  • (免费领源码)python+django+mysql线上兼职平台系统83320-计算机毕业设计项目选题推荐