当前位置: 首页 > news >正文

Sylvester矩阵、子结式、辗转相除法的三者关系(第二部分)

【三者的关系】

首先,辗转相除法可以通过Sylvester矩阵进行,过程如下(以 m = 8 、 l = 7 m = 8、l = 7 m=8l=7为例子)。

首先调整矩阵中 a a a系数到最后面几行,如下所示:

S = ( a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 ) ∼ S ′ = ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) S = \begin{pmatrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \end{pmatrix}\sim S^{'} = \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix} S= a8000000b70000000a7a800000b6b7000000a6a7a80000b5b6b700000a5a6a7a8000b4b5b6b70000a4a5a6a7a800b3b4b5b6b7000a3a4a5a6a7a80b2b3b4b5b6b700a2a3a4a5a6a7a8b1b2b3b4b5b6b70a1a2a3a4a5a6a7b0b1b2b3b4b5b6b7a0a1a2a3a4a5a60b0b1b2b3b4b5b60a0a1a2a3a4a500b0b1b2b3b4b500a0a1a2a3a4000b0b1b2b3b4000a0a1a2a30000b0b1b2b30000a0a1a200000b0b1b200000a0a1000000b0b1000000a00000000b0 S= b70000000a8000000b6b7000000a7a800000b5b6b700000a6a7a80000b4b5b6b70000a5a6a7a8000b3b4b5b6b7000a4a5a6a7a800b2b3b4b5b6b700a3a4a5a6a7a80b1b2b3b4b5b6b70a2a3a4a5a6a7a8b0b1b2b3b4b5b6b7a1a2a3a4a5a6a70b0b1b2b3b4b5b6a0a1a2a3a4a5a600b0b1b2b3b4b50a0a1a2a3a4a5000b0b1b2b3b400a0a1a2a3a40000b0b1b2b3000a0a1a2a300000b0b1b20000a0a1a2000000b0b100000a0a10000000b0000000a0

1.执行辗转相除法第一步

F 8 = Q 8 , 7 × F 7 + F 6 deg ⁡ ( F 8 ) = 8 deg ⁡ ( F 7 ) = 7 deg ⁡ ( F 6 ) = 6 F_{8} = Q_{8,7} \times F_{7} + F_{6}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{8} \right) = 8\ \ \ \ \ \ \deg\left( F_{7} \right) = 7\ \ \ \ \ \ \deg\left( F_{6} \right) = 6 F8=Q8,7×F7+F6          deg(F8)=8      deg(F7)=7      deg(F6)=6

( − 1 ) 8 × 7 ∣ S ∣ = F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 8 F 8 F 8 F 8 F 8 F 8 F 8 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ∣ = F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 6 F 6 F 6 F 6 F 6 F 6 F 6 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ∣ ( - 1)^{8 \times 7}|S| = \begin{matrix} \begin{matrix} F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{8} \\ F_{8} \\ F_{8} \\ F_{8} \\ F_{8} \\ F_{8} \\ F_{8} \end{matrix} & \left| \begin{matrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{matrix} \right| \end{matrix} = \begin{matrix} \begin{matrix} F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{7} \\ F_{6} \\ F_{6} \\ F_{6} \\ F_{6} \\ F_{6} \\ F_{6} \\ F_{6} \end{matrix} & \left| \begin{matrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{matrix} \right| \end{matrix} (1)8×7S=F7F7F7F7F7F7F7F7F8F8F8F8F8F8F8 b70000000a8000000b6b7000000a7a800000b5b6b700000a6a7a80000b4b5b6b70000a5a6a7a8000b3b4b5b6b7000a4a5a6a7a800b2b3b4b5b6b700a3a4a5a6a7a80b1b2b3b4b5b6b70a2a3a4a5a6a7a8b0b1b2b3b4b5b6b7a1a2a3a4a5a6a70b0b1b2b3b4b5b6a0a1a2a3a4a5a600b0b1b2b3b4b50a0a1a2a3a4a5000b0b1b2b3b400a0a1a2a3a40000b0b1b2b3000a0a1a2a300000b0b1b20000a0a1a2000000b0b100000a0a10000000b0000000a0 =F7F7F7F7F7F7F7F7F6F6F6F6F6F6F6 b700000000000000b6b70000000000000b5b6b700000c6000000b4b5b6b70000c5c600000b3b4b5b6b7000c4c5c60000b2b3b4b5b6b700c3c4c5c6000b1b2b3b4b5b6b70c2c3c4c5c600b0b1b2b3b4b5b6b7c1c2c3c4c5c600b0b1b2b3b4b5b6c0c1c2c3c4c5c600b0b1b2b3b4b50c0c1c2c3c4c5000b0b1b2b3b400c0c1c2c3c40000b0b1b2b3000c0c1c2c300000b0b1b20000c0c1c2000000b0b100000c0c10000000b0000000c0

对应子结式 S 6 S_{6} S6

S 6 = ( − 1 ) 2 × 1 d e t p o l ( F 7 F 7 F 8 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = ( − 1 ) 2 × 1 d e t p o l ( F 7 F 7 F 6 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ) ) S_{6} = ( - 1)^{2 \times 1}detpol\begin{pmatrix} \begin{matrix} F_{7} \\ F_{7} \\ F_{8} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix} \end{pmatrix} = ( - 1)^{2 \times 1}detpol\begin{pmatrix} \begin{matrix} F_{7} \\ F_{7} \\ F_{6} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{pmatrix} \end{pmatrix} S6=(1)2×1detpol F7F7F8 b70a8b6b7a7b5b6a6b4b5a5b3b4a4b2b3a3b1b2a2b0b1a10b0a0 =(1)2×1detpol F7F7F6 b700b6b70b5b6c6b4b5c5b3b4c4b2b3c3b1b2c2b0b1c10b0c0

相关文章:

  • 【leetcode1944--队列中可以看到的人数】
  • Linux 系统配置修改时间时区
  • OrangePi AIpro 快速上手初体验——接口、样例和目标检测
  • 5.29_Java程序流程控制
  • Linux网络编程: udp,tcp协议原理
  • 如何解压忘记了密码的加密zip压缩包?这两个方法收藏好!
  • 把自己的垃圾代码发布到官方中央仓库
  • 自定义数据集上的3D目标检测:使用OpenPCDet训练CenterPointPillar模型
  • Vue速成学习笔记
  • 通过LLM多轮对话生成单元测试用例
  • vmware中Ubuntu虚拟机和本地电脑Win10互相ping通
  • Reddit是什么?跨境独立站卖家如何用Reddit营销?
  • LangChain入门开发教程(一):Model I/O
  • CompletableFuture详细讲解
  • 【MySQL精通之路】全文搜索(5)-限制
  • android图片蒙层
  • CSS 三角实现
  • iOS 颜色设置看我就够了
  • isset在php5.6-和php7.0+的一些差异
  • Javascript设计模式学习之Observer(观察者)模式
  • MySQL的数据类型
  • node和express搭建代理服务器(源码)
  • python docx文档转html页面
  • RxJS: 简单入门
  • seaborn 安装成功 + ImportError: DLL load failed: 找不到指定的模块 问题解决
  • 和 || 运算
  • 小程序 setData 学问多
  • 异步
  • ​sqlite3 --- SQLite 数据库 DB-API 2.0 接口模块​
  • # 执行时间 统计mysql_一文说尽 MySQL 优化原理
  • (C语言)二分查找 超详细
  • (ISPRS,2021)具有遥感知识图谱的鲁棒深度对齐网络用于零样本和广义零样本遥感图像场景分类
  • (Redis使用系列) Springboot 在redis中使用BloomFilter布隆过滤器机制 六
  • (笔记自用)LeetCode:快乐数
  • (二十九)STL map容器(映射)与STL pair容器(值对)
  • (附源码)计算机毕业设计SSM疫情下的学生出入管理系统
  • (简单有案例)前端实现主题切换、动态换肤的两种简单方式
  • (转载)从 Java 代码到 Java 堆
  • *p++,*(p++),*++p,(*p)++区别?
  • .NET 使用 ILRepack 合并多个程序集(替代 ILMerge),避免引入额外的依赖
  • .net 怎么循环得到数组里的值_关于js数组
  • .NET/C# 解压 Zip 文件时出现异常:System.IO.InvalidDataException: 找不到中央目录结尾记录。
  • .NET/C# 中你可以在代码中写多个 Main 函数,然后按需要随时切换
  • .NET成年了,然后呢?
  • .py文件应该怎样打开?
  • [.net]官方水晶报表的使用以演示下载
  • [].shift.call( arguments ) 和 [].slice.call( arguments )
  • [2021 蓝帽杯] One Pointer PHP
  • [AHK] WinHttpRequest.5.1报错 0x80092004 找不到对象或属性
  • [BSGS算法]纯水斐波那契数列
  • [BUUCTF]-PWN:[极客大挑战 2019]Not Bad解析
  • [C#]winform基于opencvsharp结合Diffusion-Low-Light算法实现低光图像增强黑暗图片变亮变清晰
  • [C][数据结构][树]详细讲解
  • [C++] vector list 等容器的迭代器失效问题
  • [C++][STL源码剖析] 详解AVL树的实现