当前位置: 首页 > news >正文

c语言:自定义类型(枚举、联合体)

目录

前言:

1.位段

1.1什么是位段

1.2 位段的内存分配 

 1.3 位段的跨平台问题

2.枚举

2.1枚举类型的定义

2.2枚举类型的优点 

3.联合体(共用体)

3.1联合类型的定义

3.2联合体的特点 

3.3联合大小的计算

3.4联合体的实际应用 


前言:

c语言中中自定义类型不仅有结构体,还有枚举、联合体等类型,上一期我们详细讲解了结构体的初始化,使用,传参和内存对齐等知识,这一期我们来介绍c语言中的其他自定义类型枚举和联合体的知识。

1.位段

    在讲枚举,联合体之前,我们补充上一期结构体剩下的一点知识——位段。

1.1什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。

2.位段的成员名后边有一个冒号和一个数字。

比如:

struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};

A就是一个位段类型。

那位段A的大小是多少?  

printf("%d\n", sizeof(struct A));

这就不得不介绍以上的代码是什么意思了,_a后面的2表示我们只给_a 变量分配两个比特位的空间,以此类推,后面的5、10、30都是给各自变量分配了该数量的比特位的空间,这是为什么呢?为什么要给一个变量这么小的空间呢?因为有时我们发现有的变量只固定表示一些很小的数值,如_a变量,我们如果只需要它表示0-3的值,给它分配两个比特位是完全够的,所以使用位段是为了节省空间的做法,在某些变量只表示固定范围的数值时,我们就用位段限制它的空间,尽可能去节省空间,那么我们来看这个结构体的空间大小吧:

四个int类型占8个字节,平均占2个字节,在不超出数值表示范围的情况下,我们用位段省下了一半的空间。

1.2 位段的内存分配 

    既然位段能节省空间,我们就不得不解释位段是如何分配内存的:

1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

我们来看一段代码:

//一个例子
struct S
{char a:3;char b:4;char c:5;char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

我们给a、b、c、d、四个变量分别分配了3,4,5,4个比特位,3+4+5+4=16,它们加起来占16个比特位,是不是意味着S占16÷8=2个字节呢?我们计算一下S所占的空间:

出乎我们意料,它占了三个字节,这是因为位段的存储规则是不确定的。

如果这个结构体占三个字节,那么它内部是这样存储的:

因为a占3个比特位,b占四个比特位,加起来不超过一个字节,所以它们被放在同一个字节内,而c占5个比特位,字节1空间不够,所以被放在了字节2,此时字节2还剩3个比特位,d占四个比特位,显然字节2放不下,又开辟了字节3把d放在里面,剩下一个字节的空间就是这样丢失的。

 1.3 位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机 器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是 舍弃剩余的位还是利用,这是不确定的。

总结

跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

2.枚举

  枚举也是c语言中自定义类型的一种,那么枚举是什么呢?

枚举顾名思义就是一一列举。

把可能的取值一一列举。

比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。

性别有:男、女、保密,也可以一一列举。

月份有12个月,也可以一一列举。

这里就可以使用枚举了。

2.1枚举类型的定义

相比于结构体的关键字为struct,枚举也有自己的关键字:enum,了解了它的关键字,我们来看枚举的应用实例:如我们要表示一周七天,我们要表示性别,三原色

enum Day//星期
{Mon,Tues,Wed,Thur,Fri,Sat,Sun
};
enum Sex//性别
{MALE,FEMALE,SECRET
};
enum Color//颜色
{RED,GREEN,BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。

{}中的内容是枚举类型的可能取值,也叫枚举常量

这些可能取值都是有值的,默认从0开始,依次递增1,什么意思呢?如我们的Color类型里面的从头开始为RED,那么它的值就是0,相应的,GREED的值为1,BLUE的值为2,当然在声明枚举类型的时候也可以赋初值。

enum Color//颜色
{RED=1,GREEN=2,BLUE=4
};

2.2枚举类型的优点 

为什么要使用枚举?

我们可以使用 #define 定义常量,为什么非要使用枚举?

枚举的优点:

1. 增加代码的可读性和可维护性

2. 和#define定义的标识符比较枚举有类型检查,更加严谨。

3. 便于调试

4. 使用方便,一次可以定义多个常量

3.联合体(共用体)

3.1联合类型的定义

联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体),关键字为union。

比如:

//联合类型的声明
union Un
{char c;int i;
};
//联合变量的定义
union Un un;
//计算连个变量的大小
printf("%d\n", sizeof(un));

3.2联合体的特点 

 联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联 合至少得有能力保存最大的那个成员)。

问:

union Un
{int i;char c;
};
union Un un;
// 下面输出的结果是一样的吗?
printf("%p\n", &(un.i));
printf("%p\n", &(un.c));

首先我们来分析一下,因为我们联合体的特点是变量之间共用一块空间,所以i的地址和c的地址是同一块,那么它们&i和&c的结果是一样的:

很显然,我们的分析是正确的。

3.3联合大小的计算

联合体占多少空间,有两个规则:

1.联合的大小至少是最大成员的大小。

2.当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

比如:

union Un1
{char c[5];int i;
};
union Un2
{short c[7];int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));
printf("%d\n", sizeof(union Un2));

从Un1开始,它的内部定义了一个5个元素的char类型的数组,长度为5个字节,那是否说明它的内存就是5个字节呢?我们回到上面内存规则的第二条—— 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍,很显然5不是4的整数倍,所以我们扩展到了8,那么8就是它所占的字节数:

结果完全正确,那么Un2呢,short类型占2个字节,我们定义了一个7个变量的short类型的数组,占14个字节,又创建了一个int类型的变量,考虑到联合体内存共用的特性,结果肯定不为14+4,我们要考的还是第二条对齐的规则,14不是4的整数倍,由14扩展到了16:

怎么样,是不是对联合体内存的规则有一定的了解了呢。

3.4联合体的实际应用 

    联合体有很多作用,我们之前讲过大小端字节序的概念,还讲了设计一个程序判断当前环境是大端还是小端,学了联合体之后,我们使用联合体也能设计这样的程序且简单,清晰明了:

union Un
{char c;int i;
};
int main()
{union Un un = { 0 };un.i = 1;if (un.c == 1){printf("小端\n");}else{printf("大端\n");}return 0;
}

我们当前是小端字节序,来看结果吧:

是不是很神奇呢。

到这里我们自定义类型的的内容就到此结束了,各位友友读到这里留下宝贵的三连和评论吧,有不足之处望各位佬佬私信和我交流!!! 

相关文章:

  • 网络流媒体协议——HLS协议
  • MySQL实体类框架
  • OpenGauss数据库-7.用户及角色
  • Vue3【十五】标签的Ref属性
  • select模块
  • 微信小程序学习笔记(1)
  • linux编辑器-vim
  • vue解决跨域问题
  • Spark RDD算子
  • 代码随想录算法训练营第三十一天| 455.分发饼干,376. 摆动序列 ,53. 最大子序和
  • 10进制与二、八、十六进制的转换
  • Day25 首页待办事项及备忘录添加功能
  • MFC 使用sapi文字转换为语音
  • 跨域、JSONP、CORS、Spring、Spring Security解决方案
  • maven的install不报错但deploy到nexus报400错误
  • “寒冬”下的金三银四跳槽季来了,帮你客观分析一下局面
  • 〔开发系列〕一次关于小程序开发的深度总结
  • CSS选择器——伪元素选择器之处理父元素高度及外边距溢出
  • GraphQL学习过程应该是这样的
  • input实现文字超出省略号功能
  • JavaScript类型识别
  • php面试题 汇集2
  • Python中eval与exec的使用及区别
  • Quartz初级教程
  • Spring核心 Bean的高级装配
  • Vue--数据传输
  • WePY 在小程序性能调优上做出的探究
  • 从零开始的无人驾驶 1
  • 大型网站性能监测、分析与优化常见问题QA
  • 基于axios的vue插件,让http请求更简单
  • 基于Volley网络库实现加载多种网络图片(包括GIF动态图片、圆形图片、普通图片)...
  • 力扣(LeetCode)965
  • 每天一个设计模式之命令模式
  • 排序(1):冒泡排序
  • 微服务入门【系列视频课程】
  • 我的面试准备过程--容器(更新中)
  • ​业务双活的数据切换思路设计(下)
  • (4)事件处理——(2)在页面加载的时候执行任务(Performing tasks on page load)...
  • (Mirage系列之二)VMware Horizon Mirage的经典用户用例及真实案例分析
  • (Python) SOAP Web Service (HTTP POST)
  • (TipsTricks)用客户端模板精简JavaScript代码
  • (阿里巴巴 dubbo,有数据库,可执行 )dubbo zookeeper spring demo
  • (动手学习深度学习)第13章 计算机视觉---图像增广与微调
  • (附源码)ssm教师工作量核算统计系统 毕业设计 162307
  • (附源码)计算机毕业设计SSM在线影视购票系统
  • (三维重建学习)已有位姿放入colmap和3D Gaussian Splatting训练
  • (四)Linux Shell编程——输入输出重定向
  • (一)VirtualBox安装增强功能
  • (转)EXC_BREAKPOINT僵尸错误
  • (转)树状数组
  • (转载)从 Java 代码到 Java 堆
  • *p++,*(p++),*++p,(*p)++区别?
  • .NET 6 在已知拓扑路径的情况下使用 Dijkstra,A*算法搜索最短路径
  • .Net 6.0 处理跨域的方式
  • .NET企业级应用架构设计系列之结尾篇