当前位置: 首页 > news >正文

Kotlin基础——Typeclass

高阶类型

如在Iterable新增泛型方法时

interface Iterable<T> {fun filter(p: (T) -> Boolean): Iterable<T>fun remove(p: (T) -> Boolean): Iterable<T> = filter { x -> !p(x) }
}

对应的List、Set实现上述方法时仍需要返回具体的类型

interface List<T> : Iterable<T> {fun filter(p: (T) -> Boolean): List<T>fun remove(p: (T) -> Boolean): List<T> = filter { x -> !p(x) }
}interface Set<T> : Iterable<T> {fun filter(p: (T) -> Boolean): Set<T>fun remove(p: (T) -> Boolean): Set<T> = filter { x -> !p(x) }
}

使用高阶类型可以解决上述问题,高阶类型指的是用类型构造新类型,Kotlin可以通过扩展实现高阶类型(下面例子都是根据这个来实现)

interface Kind<out F, out A>sealed class List<out A> : Kind<List.K, A> {object K
}inline fun <A> Kind<List.K, A>.unwrap(): List<A> = this as List<A>object Nil : List<Nothing>()
data class Cons<A>(val head: A, val tail: List<A>) : List<A>()
  • Kind<out F, out A>表示类型构造器F应用类型参数A产生的新类型,F实际上不能携带类型参数
  • List.K是List的高阶类型,也就是说传入不同的A,根据List.K会有不同类型
  • unwrap()将Kind<List.K, A>类型转为List<A>进行操作
  • Nil为空列表用作尾部,Cons由元素head和及其指向tail构成的链表

Functor

Functor的map():通过f()方法将Kind<F, A>类型转为Kind<F, B>类型

interface Functor<F> {fun <A, B> Kind<F, A>.map(f: (A) -> B): Kind<F, B>
}object ListFunctor : Functor<List.K> {override fun <A, B> Kind<List.K, A>.map(f: (A) -> B): Kind<List.K, B> {return when (this) {is Cons -> {val t = (this.tail.map(f)).unwrap()Cons<B>(f(this.head), t)}else -> Nil}}
}

使用方法如下,将Con<Int>转为了Con<String>

val cons: Cons<Int> = Cons(1, Nil)
println(cons.head::class)
println(cons.tail)
ListFunctor.run {val cons2: Cons<String> = cons.map { it.toString() } as Cons<String>println(cons2.head::class)println(cons2.tail)
}

打印如下

class kotlin.Int
com.demo.demo1.Nil@5361555
class kotlin.String
com.demo.demo1.Nil@5361555

Eq和ListEq

Eq

Eq根据传入的类型参数,对其制定比较规则

interface Eq<F> {fun F.eq(that: F): Boolean
}
object IntEq : Eq<Int> {override fun Int.eq(that: Int): Boolean {return this == that}
}

如上,对于Int,判断值是否相等,使用方法如下

IntEq.run {val a = 1println(a.eq(1))println(a.eq(2))
}

打印如下

true
false

ListEq

ListEq可根据指定类型参数的比较规则,实现对两个List比较

abstract class ListEq<A>(val a: Eq<A>) : Eq<Kind<List.K, A>> {override fun Kind<List.K, A>.eq(that: Kind<List.K, A>): Boolean {val curr = thisreturn if (curr is Cons && that is Cons) {val headEq = a.run {curr.head.eq(that.head)}if (headEq) curr.tail.eq(that.tail) else false} else curr is Nil && that is Nil}
}
object IntListEq : ListEq<Int>(IntEq)

如上,实现IntListEq,使用方法如下

IntListEq.run {val a = Cons(1, Cons(2, Nil))val b = Cons(1, Cons(2, Nil))val c = Cons(1, Nil)println(a.eq(b))println(a.eq(c))
}

打印如下

true
false

show和Foldable

Show

show根据传入的类型参数,对其制定输出规则

interface Show<F> {fun F.show(): String
}
class Book(val name: String)
object BookShow : Show<Book> {override fun Book.show(): String = this.name
}

如上,对于Book,输出name属性,调用方法如下

BookShow.run {println(Book("Dive into Kotlin").show())
}

打印如下

Dive into Kotlin

Foldable

Foldable根据传入的类型参数,对其进行拼接(不太能理解这个fold的实现。。。)

interface Foldable<F> {fun <A, B> Kind<F, A>.fold(init: B): ((B, A) -> B) -> B
}
object ListFoldable : Foldable<List.K> {override fun <A, B> Kind<List.K, A>.fold(init: B): ((B, A) -> B) -> B = { f ->fun fold0(l: List<A>, v: B): B {return when (l) {is Cons -> {fold0(l.tail, f(v, l.head))}else -> v}}fold0(this.unwrap(), init)}
}

ListShow

abstract class ListShow<A>(val a: Show<A>) : Show<Kind<List.K, A>> {override fun Kind<List.K, A>.show(): String {val fa = thisreturn "[" + ListFoldable.run {fa.fold(listOf<String>())({ r, i ->r + a.run { i.show() }}).joinToString() + "]"}}
}
object BookListShow : ListShow<Book>(BookShow)

调用方法如下

BookListShow.run {println(Cons(Book("Dive into Kotlin"),Cons(Book("Thinking in Java"), Nil)).show())
}

打印如下

[Dive into Kotlin, Thinking in Java]

Monoid

Monoid满足结合律和同一律

interface Monoid<A> {fun zero(): Afun A.append(b: A): A
}

如对于字符串Monoid

  • 结合律:(“A”+“B”)+“C” == “A”+(“B”+“C”)
  • 同一律:“A”+“” == “A”
object StringConcatMonoid : Monoid<String> {override fun zero(): String = ""override fun String.append(b: String): String = this + b
}
fun <A> List<A>.sum(ma: Monoid<A>): A {val fa = thisreturn ListFoldable.run {fa.fold(ma.zero())({ s, i ->ma.run {s.append(i)}})}
}

使用方式如下

println(Cons("Dive ",Cons("into ",Cons("Kotlin", Nil))).sum(StringConcatMonoid)
)

打印如下

Dive into Kotlin

Monad

Monad包含了最小的原始操作集合pure()和flatMap(),通过这两个组合,我们可以实现更复杂的数据转换操作

interface Monad<F> {fun <A> pure(a: A): Kind<F, A>fun <A, B> Kind<F, A>.flatMap(f: (A) -> Kind<F, B>): Kind<F, B>
}

如下实现ListMonad

object ListMonad : Monad<List.K> {private fun <A> append(fa: Kind<List.K, A>, fb: Kind<List.K, A>): Kind<List.K, A> {return if (fa is Cons) {Cons(fa.head, append(fa.tail, fb).unwrap())} else {fb}}override fun <A> pure(a: A): Kind<List.K, A> {return Cons(a, Nil)}override fun <A, B> Kind<List.K, A>.flatMap(f: (A) -> Kind<List.K, B>): Kind<List.K, B> {val fa = thisval empty: Kind<List.K, B> = Nilreturn ListFoldable.run {fa.fold(empty)({ r, l ->append(r, f(l))})}}
}

Applicative

数学上3中代数结构关系如下Functor -> Applicative -> Monad

interface Functor<F> {fun <A, B> Kind<F, A>.map(f: (A) -> B): Kind<F, B>
}interface Applicative<F> : Functor<F> {fun <A> pure(a: A): Kind<F, A>fun <A, B> Kind<F, A>.ap(f: Kind<F, (A) -> B>): Kind<F, B>override fun <A, B> Kind<F, A>.map(f: (A) -> B): Kind<F, B> {return ap(pure(f))}
}interface Monad<F> : Applicative<F> {fun <A, B> Kind<F, A>.flatMap(f: (A) -> Kind<F, B>): Kind<F, B>override fun <A, B> Kind<F, A>.ap(f: Kind<F, (A) -> B>): Kind<F, B> {return f.flatMap { fn ->this.flatMap { a ->pure(fn(a))}}}
}

Option和OptionT

Kotlin中没有checked Exception,而是使用类型代替异常处理错误

Either和EitherT

相关文章:

  • three.js 第八节 - gltf加载器、解码器
  • Linux_内核缓冲区
  • 高斯算法的原理及其与常规求和方法的区别
  • 计算机系统基础实训七-MallocLab实验
  • vmware虚拟机安装ubuntu20.04
  • 9、Spring之Bean生命周期~依赖注入(总)
  • python入门基础知识(错误和异常)
  • 兴顺物流管理系统的设计
  • 从开源EPR产品Odoo学习
  • Java之Hutool/Guava/Apache Commons工具包项目实践
  • Node.js 渲染三维模型并导出为图片
  • 后仿真中的 《specify/endspecify block》之(5)使用specify进行时序仿真
  • 【区分vue2和vue3下的element UI Descriptions 描述列表组件,分别详细介绍属性,事件,方法如何使用,并举例】
  • GPT-4o一夜被赶超,Claude 3.5一夜封王|快手可灵大模型推出图生视频功能|“纯血”鸿蒙大战苹果AI|智谱AI“钱途”黯淡|月之暗面被曝进军美国
  • 4、MFC:菜单栏、工具栏与状态栏
  • Docker 笔记(1):介绍、镜像、容器及其基本操作
  • Logstash 参考指南(目录)
  • rc-form之最单纯情况
  • redis学习笔记(三):列表、集合、有序集合
  • Vue 重置组件到初始状态
  • webgl (原生)基础入门指南【一】
  • 二维平面内的碰撞检测【一】
  • 回顾 Swift 多平台移植进度 #2
  • 检测对象或数组
  • 名企6年Java程序员的工作总结,写给在迷茫中的你!
  • 驱动程序原理
  • 微信小程序:实现悬浮返回和分享按钮
  • 问题之ssh中Host key verification failed的解决
  • 原生js练习题---第五课
  • 智能合约开发环境搭建及Hello World合约
  • 《码出高效》学习笔记与书中错误记录
  • mysql 慢查询分析工具:pt-query-digest 在mac 上的安装使用 ...
  • ​ArcGIS Pro 如何批量删除字段
  • ​secrets --- 生成管理密码的安全随机数​
  • ​软考-高级-信息系统项目管理师教程 第四版【第19章-配置与变更管理-思维导图】​
  • ​字​节​一​面​
  • !! 2.对十份论文和报告中的关于OpenCV和Android NDK开发的总结
  • #控制台大学课堂点名问题_课堂随机点名
  • (C语言)fgets与fputs函数详解
  • (ISPRS,2023)深度语义-视觉对齐用于zero-shot遥感图像场景分类
  • (STM32笔记)九、RCC时钟树与时钟 第一部分
  • (超简单)使用vuepress搭建自己的博客并部署到github pages上
  • (附源码)php新闻发布平台 毕业设计 141646
  • (贪心 + 双指针) LeetCode 455. 分发饼干
  • (一)、软硬件全开源智能手表,与手机互联,标配多表盘,功能丰富(ZSWatch-Zephyr)
  • (原)记一次CentOS7 磁盘空间大小异常的解决过程
  • (转) ns2/nam与nam实现相关的文件
  • (转)关于多人操作数据的处理策略
  • ***测试-HTTP方法
  • *算法训练(leetcode)第三十九天 | 115. 不同的子序列、583. 两个字符串的删除操作、72. 编辑距离
  • .NET 4.0中的泛型协变和反变
  • .NET CF命令行调试器MDbg入门(二) 设备模拟器
  • .Net Core与存储过程(一)
  • .NET 回调、接口回调、 委托
  • /bin/bash^M: bad interpreter: No such file or directory