当前位置: 首页 > news >正文

【机器翻译】基于术语词典干预的机器翻译挑战赛

文章目录

    • 一、赛题链接
    • 二、安装库
      • 1.spacy
      • 2.torch_text
    • 三、数据预处理
        • 赛题数据
        • 类定义 `TranslationDataset`
        • 批量处理函数 `collate_fn`
    • 四、编码器和解码器
        • Encoder 类
        • Decoder 类
        • Seq2Seq 类
        • 注意事项
    • 五、主函数
        • 1. `load_terminology_dictionary(dict_file)`
        • 2. `train(model, iterator, optimizer, criterion, clip)`
    • 六、验证集的模型评价和测试集的模型推理

一、赛题链接

赛题链接:https://challenge.xfyun.cn/topic/info?type=machine-translation-2024

二、安装库

1.spacy

查看本地spacy版本

pip show spacy

我安装3.6.0

pip install en_core_web_sm-3.6.0.tar.gz

en_core_web_sm下载链接:https://github.com/explosion/spacy-models/releases

2.torch_text

!pip install torchtext

命令 !pip install torchtext 是一个在支持Jupyter Notebook或类似环境的Python解释器中使用的命令,用于安装或更新torchtext库。这个命令通过Python的包管理工具pip来执行。

!:这个符号在Jupyter Notebook、Google Colab等环境中用作前缀,允许你在代码单元中执行shell命令。这意呀着,紧跟在这个符号后面的命令将会作为shell命令执行,而不是Python代码。

torchtext是PyTorch生态系统中的一个库,它提供了一套用于处理自然语言和其他文本数据的工具,包括数据加载、预处理、词汇表构建和简单的文本分类等。

三、数据预处理

赛题数据
  • 训练集:双语数据 - 中英14万余双语句对
  • 开发集:英中1000双语句对
  • 测试集:英中1000双语句对
  • 术语词典:英中2226条
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchtext.data.utils import get_tokenizer
from collections import Counter
import random
from torch.utils.data import Subset, DataLoader
import time# 定义数据集类
# 修改TranslationDataset类以处理术语
class TranslationDataset(Dataset):def __init__(self, filename, terminology):self.data = []with open(filename, 'r', encoding='utf-8') as f:for line in f:en, zh = line.strip().split('\t')self.data.append((en, zh))self.terminology = terminology# 创建词汇表,注意这里需要确保术语词典中的词也被包含在词汇表中self.en_tokenizer = get_tokenizer('basic_english')self.zh_tokenizer = list  # 使用字符级分词en_vocab = Counter(self.terminology.keys())  # 确保术语在词汇表中zh_vocab = Counter()for en, zh in self.data:en_vocab.update(self.en_tokenizer(en))zh_vocab.update(self.zh_tokenizer(zh))# 添加术语到词汇表self.en_vocab = ['<pad>', '<sos>', '<eos>'] + list(self.terminology.keys()) + [word for word, _ in en_vocab.most_common(10000)]self.zh_vocab = ['<pad>', '<sos>', '<eos>'] + [word for word, _ in zh_vocab.most_common(10000)]self.en_word2idx = {word: idx for idx, word in enumerate(self.en_vocab)}self.zh_word2idx = {word: idx for idx, word in enumerate(self.zh_vocab)}def __len__(self):return len(self.data)def __getitem__(self, idx):en, zh = self.data[idx]en_tensor = torch.tensor([self.en_word2idx.get(word, self.en_word2idx['<sos>']) for word in self.en_tokenizer(en)] + [self.en_word2idx['<eos>']])zh_tensor = torch.tensor([self.zh_word2idx.get(word, self.zh_word2idx['<sos>']) for word in self.zh_tokenizer(zh)] + [self.zh_word2idx['<eos>']])return en_tensor, zh_tensordef collate_fn(batch):en_batch, zh_batch = [], []for en_item, zh_item in batch:en_batch.append(en_item)zh_batch.append(zh_item)# 对英文和中文序列分别进行填充en_batch = nn.utils.rnn.pad_sequence(en_batch, padding_value=0, batch_first=True)zh_batch = nn.utils.rnn.pad_sequence(zh_batch, padding_value=0, batch_first=True)return en_batch, zh_batch

这段代码定义了一个用于机器翻译任务的数据集类 TranslationDataset,它继承自 PyTorch 的 Dataset 类。这个类特别设计来处理包含英文和中文翻译对的文本文件,并且它还支持一个术语词典(terminology),以确保这些术语在构建词汇表时被优先考虑。下

类定义 TranslationDataset
  • 初始化方法 __init__:

    • 读取翻译文件(每行包含一个英文句子和一个中文句子,由制表符分隔)。
    • 初始化术语词典(terminology),这是一个字典。
    • 使用 get_tokenizer('basic_english') 获取英文的基本分词器。对于中文,这里简单地将整个句子视为一个字符序列(使用 list 作为分词器,实际上并不是真正的分词,但在这个示例中为了简化处理)。
    • 使用 Counter 计数英文术语、英文句子分词结果和中文句子分词结果(尽管中文这里按字符处理,但仍进行计数以便后续筛选高频词)。
    • 构建英文和中文的词汇表。首先添加特殊标记(<pad>, <sos>, <eos>),然后添加术语词典中的词,最后添加最常见的10000个英文和中文词(通过 most_common(10000) 获取)。
    • 创建词汇表到索引的映射(word2idx)。
  • 长度方法 __len__:

    • 返回数据集中翻译对的数量。
  • 获取项方法 __getitem__:

    • 根据索引 idx 获取数据集中的一个翻译对(英文和中文)。
    • 使用分词器将英文句子分词,并将每个词转换为索引。
    • 对于中文句子,由于这里按字符处理,直接将每个字符转换为索引。
    • 序列开始和结束标记:在序列两端添加<sos> (Sequence Start)和<eos> (Sequence End)标记,帮助模型识别序列的起始和结束。
    • 在英文和中文句子的末尾添加 <eos> 索引表示句子结束。
    • 返回英文和中文句子的索引张量。
批量处理函数 collate_fn
  • 这个函数用于在 DataLoader 中将多个样本组合成一个批次。
  • 它遍历批次中的每个英文和中文句子索引张量,并将它们分别收集到 en_batchzh_batch 中。
  • 使用 nn.utils.rnn.pad_sequence 对英文和中文句子批次进行填充,以确保批次中的每个句子都有相同的长度(较短的句子用0填充,即 <pad> 的索引)。这里设置 batch_first=True 表示批次维度是第一维。
  • 返回填充后的英文和中文句子批次。

四、编码器和解码器

class Encoder(nn.Module):def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):super().__init__()self.embedding = nn.Embedding(input_dim, emb_dim)self.rnn = nn.GRU(emb_dim, hid_dim, n_layers, dropout=dropout, batch_first=True)self.dropout = nn.Dropout(dropout)def forward(self, src):# src shape: [batch_size, src_len]embedded = self.dropout(self.embedding(src))# embedded shape: [batch_size, src_len, emb_dim]outputs, hidden = self.rnn(embedded)# outputs shape: [batch_size, src_len, hid_dim]# hidden shape: [n_layers, batch_size, hid_dim]return outputs, hiddenclass Decoder(nn.Module):def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout):super().__init__()self.output_dim = output_dimself.embedding = nn.Embedding(output_dim, emb_dim)self.rnn = nn.GRU(emb_dim, hid_dim, n_layers, dropout=dropout, batch_first=True)self.fc_out = nn.Linear(hid_dim, output_dim)self.dropout = nn.Dropout(dropout)def forward(self, input, hidden):# input shape: [batch_size, 1]# hidden shape: [n_layers, batch_size, hid_dim]embedded = self.dropout(self.embedding(input))# embedded shape: [batch_size, 1, emb_dim]output, hidden = self.rnn(embedded, hidden)# output shape: [batch_size, 1, hid_dim]# hidden shape: [n_layers, batch_size, hid_dim]prediction = self.fc_out(output.squeeze(1))# prediction shape: [batch_size, output_dim]return prediction, hiddenclass Seq2Seq(nn.Module):def __init__(self, encoder, decoder, device):super().__init__()self.encoder = encoderself.decoder = decoderself.device = devicedef forward(self, src, trg, teacher_forcing_ratio=0.5):# src shape: [batch_size, src_len]# trg shape: [batch_size, trg_len]batch_size = src.shape[0]trg_len = trg.shape[1]trg_vocab_size = self.decoder.output_dimoutputs = torch.zeros(batch_size, trg_len, trg_vocab_size).to(self.device)_, hidden = self.encoder(src)input = trg[:, 0].unsqueeze(1)  # Start tokenfor t in range(1, trg_len):output, hidden = self.decoder(input, hidden)outputs[:, t, :] = outputteacher_force = random.random() < teacher_forcing_ratiotop1 = output.argmax(1)input = trg[:, t].unsqueeze(1) if teacher_force else top1.unsqueeze(1)return outputs

上述代码实现了基于GRU(门控循环单元)的序列到序列(Seq2Seq)模型,该模型通常用于机器翻译、文本摘要等任务。代码由三个主要部分组成:Encoder 类、Decoder 类和 Seq2Seq 类。下面是对每个部分的详细解释:

Encoder 类
  • 初始化 (__init__): 接收输入维度(input_dim)、嵌入维度(emb_dim)、隐藏层维度(hid_dim)、层数(n_layers)和dropout比率(dropout)作为参数。构建了一个嵌入层(nn.Embedding)用于将输入转换为嵌入向量,一个GRU层(nn.GRU)用于处理序列数据,以及一个dropout层(nn.Dropout)用于减少过拟合。
  • 前向传播 (forward): 接收源序列(src)作为输入,首先通过嵌入层和dropout层,然后通过GRU层。返回GRU的输出和最终的隐藏状态。
Decoder 类
  • 初始化 (__init__): 类似于Encoder,但增加了一个全连接层(nn.Linear)用于将GRU的输出转换为预测的输出维度。
  • 前向传播 (forward): 接收目标序列的当前输入(input)和隐藏状态(hidden)作为输入。首先将输入通过嵌入层和dropout层,然后通过GRU层。最后,使用全连接层将GRU的输出转换为预测,并返回预测和更新后的隐藏状态。
Seq2Seq 类
  • 初始化 (__init__): 接收Encoder和Decoder实例以及设备(device)作为参数。这些实例和设备将用于模型的训练和推理。
  • 前向传播 (forward): 接收源序列(src)和目标序列(trg)作为输入,以及一个可选的教师强制比率(teacher_forcing_ratio)。首先,通过Encoder处理源序列以获取初始隐藏状态。然后,使用目标序列的第一个元素(通常是开始标记)作为Decoder的初始输入。在接下来的时间步中,Decoder根据当前输入和隐藏状态生成输出。根据教师强制比率,Decoder的下一个输入可以是目标序列的实际下一个元素(教师强制)或当前时间步的预测(非教师强制)。最后,返回所有时间步的预测输出。
注意事项
  • teacher_forcing_ratio用于在训练过程中平衡教师强制和非教师强制的比例。教师强制有助于模型更快地学习,因为它总是提供正确的下一个输入;然而,非教师强制有助于模型学习在测试时如何自己生成序列。
  • 模型的输出outputs是一个三维张量,其中包含了每个时间步每个样本在每个词汇上的预测概率。

五、主函数

# 新增术语词典加载部分
def load_terminology_dictionary(dict_file):terminology = {}with open(dict_file, 'r', encoding='utf-8') as f:for line in f:en_term, ch_term = line.strip().split('\t')terminology[en_term] = ch_termreturn terminologydef train(model, iterator, optimizer, criterion, clip):model.train()epoch_loss = 0for i, (src, trg) in enumerate(iterator):src, trg = src.to(device), trg.to(device)optimizer.zero_grad()output = model(src, trg)output_dim = output.shape[-1]output = output[:, 1:].contiguous().view(-1, output_dim)trg = trg[:, 1:].contiguous().view(-1)loss = criterion(output, trg)loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), clip)optimizer.step()epoch_loss += loss.item()return epoch_loss / len(iterator)

这段代码包含两个主要的函数,用于处理术语词典的加载和模型训练的流程。下面是对这两个函数的详细解释:

1. load_terminology_dictionary(dict_file)

这个函数用于加载一个术语词典文件,并将文件中的内容转换为一个Python字典。这个字典的键(key)是英文术语,值(value)是对应的中文术语。

  • 参数:

    • dict_file: 术语词典文件的路径,该文件每行包含一个英文术语和一个中文术语,两者之间用制表符(\t)分隔。
  • 过程:

    1. 初始化一个空字典terminology来存储术语对。
    2. 使用with open(...)语句以只读模式('r')和UTF-8编码打开术语词典文件。这样做可以确保文件正确关闭,即使在读取文件时发生异常也是如此。
    3. 遍历文件的每一行,使用strip()方法去除每行末尾的换行符等空白字符,然后使用split('\t')方法将每行按制表符分割成英文术语和中文术语。
    4. 将英文术语作为键,中文术语作为值,存入terminology字典中。
    5. 遍历完成后,返回terminology字典。
2. train(model, iterator, optimizer, criterion, clip)

这个函数定义了模型训练的一个完整周期(epoch)的流程。它接收一个模型、一个数据迭代器、一个优化器、一个损失函数和一个梯度裁剪值作为参数。

  • 参数:

    • model: 待训练的模型。
    • iterator: 数据迭代器,用于遍历训练数据。
    • optimizer: 优化器,用于更新模型的参数以最小化损失函数。
    • criterion: 损失函数,用于评估模型预测和真实标签之间的差异。
    • clip: 梯度裁剪的阈值,用于防止梯度爆炸。
  • 过程:

    1. 将模型设置为训练模式(model.train())。
    2. 初始化epoch_loss为0,用于记录整个训练周期的总损失。
    3. 遍历迭代器中的每一批数据(src, trg),其中src是源语言数据,trg是目标语言数据。
    4. 将源数据和目标数据移动到指定的设备(如GPU)上。
    5. 清零优化器的梯度。
    6. 通过模型进行前向传播,得到预测结果output
    7. 由于模型通常输出的是整个序列的预测(包括起始标记),而损失计算通常不包括起始标记,因此需要调整outputtrg的形状,以排除起始标记。
    8. 计算损失值loss
    9. 通过反向传播计算梯度。
    10. 使用梯度裁剪来防止梯度爆炸。
    11. 更新模型的参数。
    12. 累加当前批次的损失值到epoch_loss
    13. 遍历完成后,计算并返回整个训练周期的平均损失值。
# 主函数
if __name__ == '__main__':start_time = time.time()  # 开始计时device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')#terminology = load_terminology_dictionary('../dataset/en-zh.dic')terminology = load_terminology_dictionary('../dataset/en-zh.dic')# 加载数据dataset = TranslationDataset('../dataset/train.txt',terminology = terminology)# 选择数据集的前N个样本进行训练N = 1000  #int(len(dataset) * 1)  # 或者你可以设置为数据集大小的一定比例,如 int(len(dataset) * 0.1)subset_indices = list(range(N))subset_dataset = Subset(dataset, subset_indices)train_loader = DataLoader(subset_dataset, batch_size=32, shuffle=True, collate_fn=collate_fn)# 定义模型参数INPUT_DIM = len(dataset.en_vocab)OUTPUT_DIM = len(dataset.zh_vocab)ENC_EMB_DIM = 256DEC_EMB_DIM = 256HID_DIM = 512N_LAYERS = 2ENC_DROPOUT = 0.5DEC_DROPOUT = 0.5# 初始化模型enc = Encoder(INPUT_DIM, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT)dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT)model = Seq2Seq(enc, dec, device).to(device)# 定义优化器和损失函数optimizer = optim.Adam(model.parameters())criterion = nn.CrossEntropyLoss(ignore_index=dataset.zh_word2idx['<pad>'])# 训练模型N_EPOCHS = 10CLIP = 1for epoch in range(N_EPOCHS):train_loss = train(model, train_loader, optimizer, criterion, CLIP)print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f}')# 在训练循环结束后保存模型torch.save(model.state_dict(), './translation_model_GRU.pth')end_time = time.time()  # 结束计时# 计算并打印运行时间elapsed_time_minute = (end_time - start_time)/60print(f"Total running time: {elapsed_time_minute:.2f} minutes")

在这里插入图片描述
下面是对代码主要部分的详细解释:

  1. 环境设置与设备选择

    • 使用torch.device来检查CUDA是否可用,并据此选择使用GPU还是CPU进行模型训练。
  2. 术语词典加载

    • 调用load_terminology_dictionary函数加载一个术语词典文件(如en-zh.dic),该文件包含英文术语及其对应的中文翻译。加载了术语词典到terminology变量中。
  3. 数据加载与预处理

    • 使用TranslationDataset类(加载训练数据集(如train.txt),并传入术语词典。
    • 从数据集中选择前N个样本(这里是1000个)进行训练,通过SubsetDataLoader进行批量处理和打乱数据。
  4. 模型参数定义

    • 根据数据集的词汇表大小等设置模型的输入维度、输出维度、嵌入维度、隐藏层维度、层数及dropout率等参数。
  5. 模型初始化

    • 分别初始化编码器(Encoder)和解码器(Decoder),然后将它们组合成Seq2Seq模型,并将模型移至选定的设备上(GPU或CPU)。
  6. 优化器和损失函数

    • 使用Adam优化器来优化模型参数。
    • 使用交叉熵损失函数(忽略填充索引)来计算预测和真实标签之间的差异。
  7. 模型训练

    • 通过一个训练循环,进行多个epoch的训练。在每个epoch中,调用train函数来训练模型。
    • 使用梯度裁剪(CLIP)来防止梯度爆炸。
    • 打印每个epoch的训练损失。
  8. 模型保存

    • 在所有epoch完成后,保存模型的参数到文件中(如translation_model_GRU.pth)。
  9. 运行时间计算

    • 计算并打印从程序开始到结束的总运行时间(以分钟为单位)。

六、验证集的模型评价和测试集的模型推理

见教程
https://datawhaler.feishu.cn/wiki/FVs2wAVN5iqHMqk5lW2ckfhAncb

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • Jenkins 离线升级
  • 【排序算法】—— 归并排序
  • 海事无人机解决方案
  • 前端开发(基础)
  • 对B-树的理解
  • bug定位策略
  • python连接kafka生产者发送消息
  • Memcached vs Redis——Java项目缓存选择
  • 数据结构-C语言-排序(2)
  • excel系列(二) - 利用 easypoi 快速实现 excel 文件导入导出
  • QQ频道导航退出
  • CV09_深度学习模块之间的缝合教学(4)--调参
  • 自定义 Java ClassLoader:深入探索
  • 13 IP层协议-网际控制报文协议ICMP
  • 人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解
  • [分享]iOS开发-关于在xcode中引用文件夹右边出现问号的解决办法
  • 「前端」从UglifyJSPlugin强制开启css压缩探究webpack插件运行机制
  • 「译」Node.js Streams 基础
  • CAP 一致性协议及应用解析
  • github指令
  • Java 内存分配及垃圾回收机制初探
  • Node项目之评分系统(二)- 数据库设计
  • rc-form之最单纯情况
  • SegmentFault 社区上线小程序开发频道,助力小程序开发者生态
  • vue-loader 源码解析系列之 selector
  • webgl (原生)基础入门指南【一】
  • 多线程事务回滚
  • 基于 Ueditor 的现代化编辑器 Neditor 1.5.4 发布
  • 基于Dubbo+ZooKeeper的分布式服务的实现
  • 前嗅ForeSpider采集配置界面介绍
  • 如何编写一个可升级的智能合约
  • 使用前端开发工具包WijmoJS - 创建自定义DropDownTree控件(包含源代码)
  • 网页视频流m3u8/ts视频下载
  • 想写好前端,先练好内功
  • 一些基于React、Vue、Node.js、MongoDB技术栈的实践项目
  • 树莓派用上kodexplorer也能玩成私有网盘
  • 整理一些计算机基础知识!
  • (ISPRS,2021)具有遥感知识图谱的鲁棒深度对齐网络用于零样本和广义零样本遥感图像场景分类
  • (MonoGame从入门到放弃-1) MonoGame环境搭建
  • (二开)Flink 修改源码拓展 SQL 语法
  • (附程序)AD采集中的10种经典软件滤波程序优缺点分析
  • (六) ES6 新特性 —— 迭代器(iterator)
  • (数据结构)顺序表的定义
  • (四)React组件、useState、组件样式
  • (五)MySQL的备份及恢复
  • (已解决)vue+element-ui实现个人中心,仿照原神
  • (转)【Hibernate总结系列】使用举例
  • (转)ABI是什么
  • (转)nsfocus-绿盟科技笔试题目
  • (转)负载均衡,回话保持,cookie
  • (转)利用PHP的debug_backtrace函数,实现PHP文件权限管理、动态加载 【反射】...
  • (转载)PyTorch代码规范最佳实践和样式指南
  • (转载)虚幻引擎3--【UnrealScript教程】章节一:20.location和rotation
  • .NET Core工程编译事件$(TargetDir)变量为空引发的思考
  • .net core使用ef 6