当前位置: 首页 > news >正文

Chiplet SPI User Guide 详细解读

目录

一. 基本介绍

1.1.整体结构

1.2. 结构细节与功能描述 

二. 输入输出接口 

2.1. IO Ports for SPI Leader

2.2. IO Ports for SPI Follower

2.3. SPI Mode Configuration

2.4. Leader IP和Follower IP功能图

三. SPI Programming

3.1. Leader Register Descriptions

3.2. Write to Follower Register

3.3. Read from Follower Register

3.4. Follower Message Formats

3.5. Follower Configuration Register Description

四. 实例分析

4.1. Auto Write Sequence

4.2. Auto Read Sequence

4.3. Write to Target Sequence

4.4. Read from Target Sequence


一. 基本介绍

1.1.整体结构

SPI广泛的应用于单片机与外围设备的连接,对于这种传统连接的SPI采用了MISO,MOSI,SCLK,SELECTS的信号线,并且支持一主多从的结构模式。那么本文中的Chiplet之间采用SPI通信接口仍然保留了此等特点,只不过文中将master对应为SPI leader,slave对应为SPI follower。同样是采用全双工方式通信,leader和follower同时在miso,mosi两条数据线上传输数据。

1.2. 结构细节与功能描述 

如图2所示,Chiplet A中包含了SPI leader和一个initiator,initiator是整个Chiplet SPI的幕后主使者,它驱动着leader和follower以及target之间的一切行为,后文为有详细案例说明。在结构中只需要明白SPI leader IP 与initiator会在一个chiplet中,这个chiplet一般为FPGA,SOC或者ASIC。initiator与SPI leader之间采用AVMM接口片内通信。 当我们配置好initiator与SPI leader之间的关系之后,chiplet之间进行inter-chip interconnection就需要用到SPI 通信的原理了,这里首先要选定哪一个chiplet的spi follower进行通信,其次对于选定的chiplet也具有对应的结构。这里我们拿Chiplet B来进行说明,ChipletB中首先用于片间通信的IP就是SPI follower IP,其次Chiplet B使用AVMM接口进行片内通信,用于连接SPI follower与target。(这里的target可以是AIB接口,对其进行配置,也可以是application register,图2中chipletB中AVMM0,AVMM1的target都是AIB IP,AVMM2是application register)。initiator may be a NIOS soft IP microconctroller

二. 输入输出接口 

2.1. IO Ports for SPI Leader

 对于SPI leader的接口主要包含两个方面,一个方面是SPI leader与SPI follower之间通信的片间接口,其中就是SPI的基本元素,sclk时钟信号,ss_n[3:0]是follower的片选信号,最多支持4个follower,mosi和miso就是master out slave in和slave out master in, mosi是一位位宽,miso[3:0]是因为每个slave对应一条miso线。AVMM不做过多赘述,自行理解,在chiplet spi系统的讲解中我们只需要直到AVMM起到片内通信作用即可。但是需要值得注意的是SPI leader IP中的AVMM是follower,initiator才是AVMM leader。

2.2. IO Ports for SPI Follower

Table 2是follower的IO细节,首先具有SPI follower的interface与SPI leader进行片间通信,信号线与SPI leader基本一致, Select信号和miso信号都变为1位位宽。AVMM接口有三个,因为需要对应三个target。具体细节自行阅读table 2。

2.3. SPI Mode Configuration

在chiplet SPI系统中,只采用一种SPI mode,即mode 0. CPOL=0, CPHA=0。代表sclk在低电平时无效,在上升沿时采样。如下图所示。

Chiplet SPI IP支持DWORD (32 bit)传输,所以读写的数据传输必须是32bits的倍数。MSB首先被传输:bit 31,最后是bit 0。

2.4. Leader IP和Follower IP功能图

SPI leader和SPI follower都有command and status Register,以及write buffer和read buffer。CSR决定了SPI leader的片选信号以及改系统的启动信号,后文会有详细介绍。SPI leader的CSR 由initiator通过AVMM直接写入,而SPI follower的CSR需要由initiator先写入到SPI leader的write buffer,然后通过mosi发送到follower的write buffer,再register write至SPI follower的CSR。SPI follower的command就可以指导follower与target之间的操作。

The Follower IP decodes the command from the Leader on the mosi signal. The miso
signal from the Follower sends data back to the Leader if directed by the Leader’s
command.

三. SPI Programming

在user guide的第三部分,主要就是具体的系统通信操作以及相关代码分析。首先在进行具体的案例分析前,我们需要再次强调整体部件的功能。在整个系统中,initiator才是真正的核心,它是CHIPLET spi系统读写指令的产生和发出者。SPI Leader则相当于一个傀儡,无条件的执行来自initiator的指令,进行读写操作,这里我认为SPI Leader有点像Bridge的功能作用。

3.1. Leader Register Descriptions

我们之前在结构细节中提到了Leader主要包含了CSR,Write buffer,Read Buffer。下表则给出了Leader中涉及的register的详细说明,我们进行解读。

对于Leader而言,只有Command Register,Write buffer,Read buffer最为有用,其中Command Register是来自initiator的指令将直接存在这里,首先它的31:30bits用于选择SPI Follower。15:2是burst length,用于决定读写DWORDS的大小,DWORDS的大小= burst length - 1.假如burst length =3 ,则代表DWORDS的数量为4。bit 1则是区分读写操作,1代表read transaction,0代表write transaction。(但是这个对于SPI leader的操作来说是没有意义 ,因为SPI为全双工,当信号线拉低时,mosi和miso同时有数据在传输)。bit 0非常重要,用于启动通信,当把trans_valid =1时,则开始传输。并且在一条新的指令执行开始前,我们都需要等待trans_valid = 0,代表idle。

Write buffer是initiator写在write buffer中的数据,通过mosi发出到follower中,一般来说第一个数据将会被follower当作指令进行decoding,后文会通过详细案例介绍。read buffer则是miso从follower的read buffer发到leader read buffer的数据。

3.2. Write to Follower Register

1. 等待trans_valid = 0,即command register bit 0 = 0,从而确保SPI system在此时是idle的。

2. initiator通过AVMM接口将要发送的数据写入到leader的write buffer中。代码如下:

avmm_if_mspi.cfg_write(17'h200, 4'hf, 32'h1010_0000);
avmm_if_mspi.cfg_write(17'h204, 4'hf, 32'h0080_0200);
avmm_if_mspi.cfg_write(17'h208, 4'hf, 32'h0017_0800);
avmm_if_mspi.cfg_write(17'h20c, 4'hf, 32'hdead_beef);
3. 设置command register的组成,设置bits31:30进行follower选择,以及burst length设置,同时拉高trans_valid代表开始传输。
avmm_if_mspi.cfg_write(17'h000, 4'hf, 32'h0000_000d);
4. 等待trans_valid = 0 代表传输结束
//Keep polling SPI leader command register bit 0 until it goes to 0
rdata_reg[0] = 1’b1;
while (rdata_reg[0] !== 1'b0) begin
avmm_if_mspi.cfg_read (17'h000, 4'hf, rdata_reg);
$display("%0t: cmd polling: rdata_reg = %x", $time, rdata_reg);
end
需要注意的是ss_n信号是被leader command控制的,所以这里没有单独使用这个信号。SPI通信是双向的,虽然这里bit 1设置的是0代表读模式,但是miso仍然在发送read buffer的数据。Leader不需要关心此时是在读还是写。这样做的好处是:Firmware can take advantage of that for maximum bandwidth usage. Command Register field rdnwr, bit 1, is used for firmware bookkeeping
only.

3.3. Read from Follower Register

1. 等待trans_valid = 0

2. initiator通过AVMM写入read command至leader 的write buffer,随后发送到follower进行告知,后续follower的command具体指令将会在后文介绍。

// Programm SPI Leader’s write buffer for a Follower read command
avmm_if_mspi.cfg_write(17'h200, 4'hf, 32'h0010_0000);
3. 设置follower的片选信号,以及burst length和bit 1 rdnwr和trans_valid。
avmm_if_mspi.cfg_write(17'h000, 4'hf, 32'h0000_000d);
4. read buffer接收数据,并且等待trans_valid为0
//using a function written for this purpose
leader_polling();
//Read back follower registers from read buffer
//First word is always don’t care
avmm_if_mspi.cfg_read (17'h1000, 4'hf, rdata_reg);
avmm_if_mspi.cfg_read (17'h1004, 4'hf, rdata_reg);
// Do something with rdata_reg
avmm_if_mspi.cfg_read (17'h1008, 4'hf, rdata_reg);
// Do something with rdata_reg
avmm_if_mspi.cfg_read (17'h100c, 4'hf, rdata_reg);
// Do something with rdata_reg

3.4. Follower Message Formats

我们之前说明了Leader的相关操作,比如Leader向Follower写,以及Leader从Follower读。相对于Leader而言,Follower的操作会更难一点,因为Leader相当于一个傀儡,全部由initiator说什么就做什么,不需要自行做过多的判断操作。但是follower则不一样,因为mosi这根线不仅要传数据,还要传让follower执行的指令,所以要对此进行区分的话,就要就一些额外的设定。所以就有了message formats。

对于Leader通过mosi发送到follower的message:

第一个DWORD,DW0代表指令:该指令的组成为:Command CMD[31:28], Burstlen[27:19], Address ADDR[18:0].which has the same format as Command Register0 [20:2]。19个bits,前两位为AVMM接口选择,后17bits为AVMM start address。

DW1-DWn:write data或者donot care。

对于Follower通过miso发送到Leader的message:

DW0: Dummy DW

DW1 - DWn: Read data or don't care, depending on the CMD and Command Register1 auto_rd_lat setting in table.

Table 4和Table 6显示了DW0的前四位 CMD[31:28]对应的功能。其中代表了六种不同的操作模式,后续会在实例中解释。

3.5. Follower Configuration Register Description

对于Follower而言,它有两个command registers,command register0 和 command register 1。Command Register0用于配置follower与target之间的具体操作,选定AVMM接口,配置AVMM burst length。以及rdnwr = 0或者1,用于确定follower与target之间的读写关系。以及同样配置了trans_valid,当这个被拉高,则start,否则finished。Command Register 1专门用来配置auto操作的一些问题,后文将会对auto sequence做详细说明,方便理解。

四. 实例分析

4.1. Auto Write Sequence

1. 首先将DW0通过initiator写入到leader的write buffer里面去,其次再把auto write的4个数据写进write buffer。对于DW0要进行严谨配置,首先是CMD=4'H7代表auto write,其次是burstlen = Dwords -1,这里四个数据的话,burstlen=3.配置AVMM接口,channel ID,AVMM start address。
// Compose the Auto Write command into DW0 of the Leader Write Buffer
// Burstlen=3 (Four DWORDSs to write to target),
// ADDR = 0x31C (avmm target 0, addr 0x31C)
avmm_if_mspi.cfg_write(17'h200, 4'hf, {4'h7, 9'h3, 19'h31c});
// Write the DWORDs to be sent to the target into the Leader Write Buffer
avmm_if_mspi.cfg_write(17'h204, 4'hf, 32'haaaa_bbbb);
avmm_if_mspi.cfg_write(17'h208, 4'hf, 32'hcccc_dddd);
avmm_if_mspi.cfg_write(17'h20c, 4'hf, 32'heeee_ffff);
avmm_if_mspi.cfg_write(17'h210, 4'hf, 32'h5555_6666);
2. 配置leader的command register,指定follower,burstlen,这里四个数据一个DW0,所以一起是五个数据,burstlen=4。然后通过mosi发出。
// Compose the Leader Command Register value
// Follower Select=0, Burst Length=4 (Five DWORDs to send over SPI),
// rdnwr=0 (write), trans_valid=1 (send)
avmm_if_mspi.cfg_write(17'h000, 4'hf, 32'h0000_0011);
3. To complete the Auto Write, the Initiator first polls the Leader Command Register
until the SPI bus is idle. Then, the Initiator polls the Follower Command Register0
until the Follower’s writes to the target are complete.
// by polling Leader Command Register bit 0
master_polling();
// Check that the Follower has finished AVMM writes by
// polling Follower Command Register0 bit 0
follower_polling();

4.2. Auto Read Sequence

auto read就是从Target取到数据一直到leader的write buffer的过程再一个SPI transaction完成。由于AVMM clk和SPI clk是同步的,所以需要通过Follower Command Register1的auto_rd_lat 这个参数设置donot care 的 DWORDS直到read data 有效。

1. 根据AVMM target的类型配置Command Register 1,如果这个target是application register block,the fields auto_chan_num and auto_offset_addr are typically 0.target is an AIB PHY, set auto_chan_num to the number of channels to be written, minus one. If the target is an AIB PHY, set auto_offset_addr to 0x800. The following example shows a 24-channel four burst Auto Read. The Initiator programs the Follower Command Register1 field auto_chan_num to 23 to indicate that 24 channels are to be written.

2. 将DW0给follower的command写入到write buffer。其中包含了burstlen = 3,CMD = 6, addr。

avmm_if_mspi.cfg_write(17'h200, 4'hf, {4'h6, 9'h3, 19'h31c});

3. 配置Leader 的command register,开始读取同时也发送。

avmm_if_mspi.cfg_write(17'h000, 4'hf, {16'h0, 14'h61, 2'h1});

3. master_polling( );

4. 开始接收数据

// Initiator can now read all 4x24 data from the Leader Read Buffer
for (int i=0; i<13; i++) begin
avmm_if_mspi.cfg_read((17'h1000 + i*4), 4'hf, rdata_reg);
// do something with rdata_reg
end

4.3. Write to Target Sequence

 

与auto操作不同的是,正常的write和read需要使用到follower的command register0.我们要通过follower的command register0指导follower与target的操作。所以一共要分为两个环节

第一环节:

1. 等待trans_valid=0

2. initiator写入leader write buffer 32'h 30000000, 代表buffer write

3. 将要发给target的data先写入到leader write buffer。

4. 配置leader command register并将write buffer里面的东西发送到follower的write buffer

5. content 包含(command DWORD和write buffer data)

第二环节:

1. 等待trans_valid = 0

2. 发送到leader write buffer 32‘h 10000000,代表register write,并且写到register 0

3. DW1为要存到follower command register0中的指令,该指令要包含:avmm_burst_len,AVMM接口选择,start addr,rdnwr=0(write),trans_valid。

4. 配置leader command register将这两个words发送过去

5. 等待trans_valid = 0

4.4. Read from Target Sequence

1. 等待 trans_valid = 0

2. 与write to target sequence环节相反,先配置follower的command register 0,写入到leader write buffer中(32'h 10000000)-》register write

3. 写入DW1,DW1为真正的command register0指令,包含avmm_burst_len,avmm选择,start_address = target's AVMM start address, rdnwr = 1(read), trans_valid = 1

4. 设置leader command register发送这两个words到follower

5. 等待trans_valid = 0

6. 将buffer read的指令通过initiator发送到Leader 的 write buffer DW0 32’h 20000000 -》buffer read

7. 设置leader的command register,开始从follower读取data,第一个为dummy word,后面为正常data。所以需要在正常words数量上加1.

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • C/C++:和为给定数(二分查找,快速排序)
  • Docker 安全及日志管理(包含SSL证书)
  • Robot Operating System——内部审查(Introspection)Service
  • html笔记
  • python 面向对象基础
  • 虚拟局域网络(VLAN)详解
  • Windows NVM(Node Version Manager)使用指南
  • 【Javascript】前端面试基础2【每日学习并更新10】
  • openmv学习笔记(24电赛笔记)
  • 面完英伟达算法岗,心态崩了。。。
  • 【Python】快速创建一个简易 HTTP 服务器(http.server)
  • 《算法笔记》总结No.11——数字处理(上)欧拉筛选
  • 数据结构与算法-随机快速排序
  • Linux:bash在被调用时会读取哪些启动文件?
  • SQL labs-SQL注入(三,sqlmap使用)
  • 【跃迁之路】【585天】程序员高效学习方法论探索系列(实验阶段342-2018.09.13)...
  • CentOS7简单部署NFS
  • codis proxy处理流程
  • Docker 笔记(2):Dockerfile
  • es6要点
  • Flannel解读
  • Python实现BT种子转化为磁力链接【实战】
  • React-flux杂记
  • 半理解系列--Promise的进化史
  • 使用前端开发工具包WijmoJS - 创建自定义DropDownTree控件(包含源代码)
  • 湖北分布式智能数据采集方法有哪些?
  • 专访Pony.ai 楼天城:自动驾驶已经走过了“从0到1”,“规模”是行业的分水岭| 自动驾驶这十年 ...
  • ​​快速排序(四)——挖坑法,前后指针法与非递归
  • ​LeetCode解法汇总2808. 使循环数组所有元素相等的最少秒数
  • ​数据链路层——流量控制可靠传输机制 ​
  • # include “ “ 和 # include < >两者的区别
  • ###51单片机学习(2)-----如何通过C语言运用延时函数设计LED流水灯
  • #AngularJS#$sce.trustAsResourceUrl
  • #include到底该写在哪
  • #我与Java虚拟机的故事#连载11: JVM学习之路
  • (1/2) 为了理解 UWP 的启动流程,我从零开始创建了一个 UWP 程序
  • (2)空速传感器
  • (Java入门)抽象类,接口,内部类
  • (PADS学习)第二章:原理图绘制 第一部分
  • (PHP)设置修改 Apache 文件根目录 (Document Root)(转帖)
  • (Redis使用系列) Springboot 实现Redis消息的订阅与分布 四
  • (待修改)PyG安装步骤
  • (附源码)计算机毕业设计高校学生选课系统
  • (力扣)1314.矩阵区域和
  • .Net MVC + EF搭建学生管理系统
  • .NET 动态调用WebService + WSE + UsernameToken
  • .net 中viewstate的原理和使用
  • .NET:自动将请求参数绑定到ASPX、ASHX和MVC(菜鸟必看)
  • .set 数据导入matlab,设置变量导入选项 - MATLAB setvaropts - MathWorks 中国
  • /bin、/sbin、/usr/bin、/usr/sbin
  • /deep/和 >>>以及 ::v-deep 三者的区别
  • ?php echo ?,?php echo Hello world!;?
  • @Autowired多个相同类型bean装配问题
  • @Transactional 详解
  • @vue/cli 3.x+引入jQuery