当前位置: 首页 > news >正文

神经网络算法应用案例,神经网络是机器算法吗

神经网络算法可以解决的问题有哪些

人工神经网络(ArtificialNeuralNetworks,ANN)系统是20世纪40年代后出现的。

它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。

BP神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。

工作原理人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。

大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。

树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。

在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。

每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

谷歌人工智能写作项目:神经网络伪原创

神经网络算法可以解决车辆路径问题吗

车辆路径问题一般使用群智能算法解决,如蚁群算法写作猫

蚁群算法(antcolonyoptimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。

当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone(称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。

有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。

最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

神经网络算法可以解决的问题有哪些

人工神经网络(ArtificialNeuralNetworks,ANN)系统是20世纪40年代后出现的。

它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。

BP神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。

工作原理人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。

大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。

树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。

在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。

每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

神经网络算法可以解决的问题有哪些。

神经网络算法是用来干什么的

神经网络算法是由多个神经元组成的算法网络。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生的想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1、信息是通过神经元上的兴奋模式分布储在网络上。

2、信息处理是通过神经元之间同时相互作用的动态过程来完成的。思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。

神经网络算法可以求最优解嘛?

神经网络可以做优化问题,但不一定能找到最优解。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

直观性的思维是将分布式存储的信息综合起来,忽然间产生的想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1、信息是通过神经元上的兴奋模式分布存储在网络上。

2、信息处理是通过神经元之间同时相互作用的动态过程来完成的。神经网络:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。

虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

神经网络主要用于什么问题的求解?

神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:1、利用神经生理与认知科学研究人类思维以及智能机理。

2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。

应用研究可分为以下两类:1、神经网络的软件模拟和硬件实现的研究。2、神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。

随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。?fr=ala0_1。

人工神经网络可以解决哪些问题

信息领域中的应用:信息处理、模式识别、数据压缩等。自动化领域:系统辨识、神经控制器、智能检测等。工程领域:汽车工程、军事工程、化学工程、水利工程等。

在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。经济领域的应用:市场价格预测、风险评估等。此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。

神经网络到底能干什么?

神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。

例如预报天气:温度湿度气压等作为输入天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度湿度气压等得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。

希望采纳!

如何利用人工神经网络或遗传算法解决实际问题

来自nnetinfo目前可以做的一般有:分类.函数拟合压缩.图象识别等等,其实说到底,所有的都能归于第2点--函数拟合.一般如果输入与输出是有强烈关系的,网络都能找得到这个关系.例如病人的特征作为输入,判断这个是否为病人,一般都是可以的.业务背景知识强,才能把神经网络运用到实际中.另外,还需要把实现问题转换为数学问题的能力.例如数字识别就是一个经典的应用.但直接把图片放进去训练是得不到识别效果的,因为维度太多了,而且信息冗余量很大.于是有人把图片的特征先自已提取出来:例如对角线与图片上的数字有几个交点等等,再把这些特征作为输入,数字类别向量作为输出,放到网络中训练.最后你再写一个数字,提取这个数字的特征,再把这特征放进网络中的时候,它就能识别到你是哪个数字了.另外,又有人用卷积神经网络去做数字识别.还有人用深度网络去做,即先把原来图片的信息用RBM网络进行压缩,然后再训练,效果就好了.等等,其实很多问题都可以做,但前提是你要想到好的方式去运用神经网络.。

Matlab神经网络原理中可以用于寻找最优解的算法有哪些?

若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。

现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。

然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。

而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。

学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr=0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,而在matlab神经网络工具箱里的lr,代表的是初始学习率。

因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。

机制如下:ifnewE2/E2>maxE_inc%若果误差上升大于阈值lr=lr*lr_dec;%则降低学习率elseifnewE2

 

相关文章:

  • 2023中国(江西)国际餐饮品牌连锁加盟展览会2月26日开幕
  • Java ServiceLoader、Spring SpringFactoriesLoader、SPI方式解耦第三方组件
  • 聚焦个性化与场景化,全新升级的三星电视看点何在?
  • LeetCode每日一题JAVA、JavaSrcipt题解——2022.08.21-08.31
  • 哪种神经网络最好使用,哪种神经网络最好用
  • 02- Spring IOC与DI
  • 基于jeecgboot流程管理平台的自定义业务表单集成方法
  • 矩阵类问题处理技巧
  • MyBatis Plus (三) --------- 入门 HelloWorld
  • 云安全践行者:亚马逊云科技如何打好“安全”牌?
  • 第8章 Spring AOP
  • 操作系统 | 【一 概述】强化阶段 —— 应用题总结
  • 深度学习(PyTorch)——python中的两大法宝(dir与help)
  • 记一次vue^2.6.5-router^3.0.6的keep-alive事故
  • vi vim 快速跳到文件末尾 在最后一行下方新增一行 (光标换行,文字不换行)
  • [ JavaScript ] 数据结构与算法 —— 链表
  • AngularJS指令开发(1)——参数详解
  • ECMAScript入门(七)--Module语法
  • Fastjson的基本使用方法大全
  • Javascripit类型转换比较那点事儿,双等号(==)
  • Python_OOP
  • session共享问题解决方案
  • Shell编程
  • socket.io+express实现聊天室的思考(三)
  • tab.js分享及浏览器兼容性问题汇总
  • vue-router 实现分析
  • 开源中国专访:Chameleon原理首发,其它跨多端统一框架都是假的?
  • 罗辑思维在全链路压测方面的实践和工作笔记
  • 区块链将重新定义世界
  • 腾讯视频格式如何转换成mp4 将下载的qlv文件转换成mp4的方法
  • 函数计算新功能-----支持C#函数
  • ​Linux Ubuntu环境下使用docker构建spark运行环境(超级详细)
  • #我与Java虚拟机的故事#连载13:有这本书就够了
  • (ZT) 理解系统底层的概念是多么重要(by趋势科技邹飞)
  • (附源码)ssm经济信息门户网站 毕业设计 141634
  • (理论篇)httpmoudle和httphandler一览
  • (七)Knockout 创建自定义绑定
  • (一)【Jmeter】JDK及Jmeter的安装部署及简单配置
  • (一)u-boot-nand.bin的下载
  • (转)memcache、redis缓存
  • .jks文件(JAVA KeyStore)
  • .NET 4 并行(多核)“.NET研究”编程系列之二 从Task开始
  • .NET中的Event与Delegates,从Publisher到Subscriber的衔接!
  • /etc/motd and /etc/issue
  • @Bean注解详解
  • [ linux ] linux 命令英文全称及解释
  • [04]Web前端进阶—JS伪数组
  • [20140403]查询是否产生日志
  • [2669]2-2 Time类的定义
  • [C#]winform部署yolov9的onnx模型
  • [IDF]被改错的密码
  • [iOS]中字体样式设置 API
  • [Machine Learning][Part 8]神经网络的学习训练过程
  • [NCTF2019]True XML cookbook
  • [OGRE]看备注学编程(02):打地鼠01-布置场地九只地鼠