当前位置: 首页 > news >正文

初等数论总结

初等数论

一、整除

1. 定义

a , b ∈ Z , a ≠ 0 a, b \in Z, a \neq 0 a,bZ,a=0 ,若 ∃ q ∈ Z \exist q \in Z qZ ,使得 b = a q b = aq b=aq ,则有 b b b 能被 a a a 整除,记作 a ∣ b a \mid b ab ,且称 b b b a a a 的因数, a a a b b b 的约数,反之即 b b b 不能被 a a a 整除,则记为 a ∤ b a \nmid b ab

2. 性质

性质1

a ∣ b a \mid b ab b ∣ c b \mid c bc ,则 a ∣ c a \mid c ac

证明如下,

∵ a ∣ b    则令    a x = b ( x ∈ Z    且    x ≠ 0 )    b ∣ c    则令    b y = c ( y ∈ Z    且    y ≠ 0 ) ∴ a x y = c ( x , y ∈ Z    且    x , y ≠ 0 ) ∴ a ∣ c \begin{aligned} & \because a \mid b \; 则令 \; ax = b (x \in Z \; 且 \; x \neq 0) \\ & \quad \; b \mid c \; 则令 \; by = c (y \in Z \; 且 \; y \neq 0) \\ & \therefore axy = c (x, y \in Z \; 且 \; x, y \neq 0) \\ & \therefore a \mid c \end{aligned} ab则令ax=b(xZx=0)bc则令by=c(yZy=0)axy=c(x,yZx,y=0)ac

性质2

a ∣ b a \mid b ab a ∣ c a \mid c ac 等价于对 ∀ Z x , y \forall Z x, y Zx,y ,有 a ∣ ( b x + c y ) a \mid (bx + cy) a(bx+cy)

证明如下,

∵ a ∣ b    则令    a p = b ( p ∈ Z    且    p ≠ 0 )    a ∣ c    则令    a q = c ( q ∈ Z    且    q ≠ 0 ) 又 ∵ b x + c y = a p x + a q y = a ( p x + q y ) 又 ∵ a ∣ ( a ( p x + q y ) ) ∴ a ∣ ( b x + c y ) \begin{aligned} & \because a \mid b \; 则令 \; ap = b (p \in Z \; 且 \; p \neq 0) \\ & \quad \; a \mid c \; 则令 \; aq = c (q \in Z \; 且 \; q \neq 0) \\ & 又\because bx + cy = apx + aqy = a(px + qy) \\ & 又\because a \mid (a(px + qy)) \\ & \therefore a \mid (bx + cy) \end{aligned} ab则令ap=b(pZp=0)ac则令aq=c(qZq=0)bx+cy=apx+aqy=a(px+qy)a(a(px+qy))a(bx+cy)

性质3

m ≠ 0 m \neq 0 m=0 ,则 a ∣ b a \mid b ab 等价于 ( m a ) ∣ ( m b ) (ma) \mid (mb) (ma)(mb)

证明如下,

∵ a ∣ b    则令    a q = b ( p ∈ Z    且    p ≠ 0 ) ∴ a q m = b m ∴ ( m a ) ∣ ( m b ) \begin{aligned} & \because a \mid b \; 则令 \; aq = b (p \in Z \; 且 \; p \neq 0) \\ & \therefore aqm = bm \\ & \therefore (ma) \mid (mb) \end{aligned} ab则令aq=b(pZp=0)aqm=bm(ma)(mb)

性质4

设有 x , y ∈ Z x, y \in Z x,yZ 满足 a x + b y = 1 ax + by = 1 ax+by=1 ,且 a ∣ n , b ∣ n a \mid n, b \mid n an,bn ,则 ( a b ) ∣ n (ab) \mid n (ab)n

证明如下,

∵ a ∣ n , b ∣ n ∴ ( a b ) ∣ ( n b ) , ( a b ) ∣ ( n a ) ∴ ( a b ) ∣ ( n b y + n a x ) ∴ ( a b ) ∣ ( n ( b y + a x ) ) ∴ ( a b ) ∣ n \begin{aligned} & \because a \mid n, b \mid n \\ & \therefore (ab) \mid (nb), (ab) \mid (na) \\ & \therefore (ab) \mid (nby + nax) \\ & \therefore (ab) \mid (n(by + ax)) \\ & \therefore (ab) \mid n \\ \end{aligned} an,bn(ab)(nb),(ab)(na)(ab)(nby+nax)(ab)(n(by+ax))(ab)n

性质5

b = q d + c , q ∈ Z b = qd + c, q \in Z b=qd+c,qZ ,则 d ∣ b d \mid b db 的充分必要条件为 d ∣ c d \mid c dc

证明如下,

  1. 证明必要性,即 b = q d + c , q ∈ Z b = qd + c, q \in Z b=qd+c,qZ d ∣ b d \mid b db 可得 d ∣ c d \mid c dc

    ∵ d ∣ b    则令    d x = b ( x ∈ Z    且    x ≠ 0 ) ∴ d x = q d + c ∴ d ( x − q ) = c ∴ d ∣ c \begin{aligned} & \because d \mid b \; 则令 \; dx = b (x \in Z \; 且 \; x \neq 0) \\ & \therefore dx = qd + c \\ & \therefore d(x - q) = c \\ & \therefore d \mid c \end{aligned} db则令dx=b(xZx=0)dx=qd+cd(xq)=cdc

  2. 证明充分性,即 b = q d + c , q ∈ Z b = qd + c, q \in Z b=qd+c,qZ d ∣ c d \mid c dc 可得 d ∣ b d \mid b db

    ∵ d ∣ c    则令    d x = c ( x ∈ Z    且    x ≠ 0 ) ∴ b = q d + x d ∴ d ( x + q ) = b ∴ d ∣ b \begin{aligned} & \because d \mid c \; 则令 \; dx = c (x \in Z \; 且 \; x \neq 0) \\ & \therefore b = qd + xd \\ & \therefore d(x + q) = b \\ & \therefore d \mid b \end{aligned} dc则令dx=c(xZx=0)b=qd+xdd(x+q)=bdb

二、模运算

1. 定义

对于 a , b ∈ Z , b ≠ 0 a, b \in Z, b \neq 0 a,bZ,b=0 a ÷ b a \div b a÷b 的余数即为 a a a b b b ,记作 a    m o d    b a \; mod \; b amodb

2. 性质

分配律

  1. 加法, ( a + b )    m o d    c = ( a    m o d    c + b    m o d    c )    m o d    c (a + b) \; mod \; c = (a \; mod \; c + b \; mod \; c) \; mod \; c (a+b)modc=(amodc+bmodc)modc

    证明如下,

    设 a = c p + x ( p , x ∈ Z , 0 ≤ x < c ) b = c q + y ( q , y ∈ Z , 0 ≤ y < c ) ∴ ( a + b )    m o d    c = ( c ( p + q ) + x + y )    m o d    c = ( x + y )    m o d    c ∴ ( a + b )    m o d    c = ( a    m o d    c + b    m o d    c )    m o d    c \begin{aligned} & 设 a = cp + x (p, x \in Z, 0 \leq x < c) \\ & \quad b = cq + y (q, y \in Z, 0 \leq y < c) \\ & \therefore (a + b) \; mod \; c = (c(p + q) + x + y) \; mod \; c = (x + y) \; mod \; c \\ & \therefore (a + b) \; mod \; c = (a \; mod \; c + b \; mod \; c) \; mod \; c \end{aligned} a=cp+x(p,xZ,0x<c)b=cq+y(q,yZ,0y<c)(a+b)modc=(c(p+q)+x+y)modc=(x+y)modc(a+b)modc=(amodc+bmodc)modc

  2. 减法, ( a − b )    m o d    c = ( a    m o d    c − b    m o d    c )    m o d    c (a - b) \; mod \; c = (a \; mod \; c - b \; mod \; c) \; mod \; c (ab)modc=(amodcbmodc)modc

    证明如下,

    设 a = c p + x ( p , x ∈ Z , 0 ≤ x < c ) b = c q + y ( q , y ∈ Z , 0 ≤ y < c ) ∴ ( a − b )    m o d    c = ( c ( p − q ) + x − y )    m o d    c = ( x − y )    m o d    c ∴ ( a − b )    m o d    c = ( a    m o d    c − b    m o d    c )    m o d    c \begin{aligned} & 设 a = cp + x (p, x \in Z, 0 \leq x < c) \\ & \quad b = cq + y (q, y \in Z, 0 \leq y < c) \\ & \therefore (a - b) \; mod \; c = (c(p - q) + x - y) \; mod \; c = (x - y) \; mod \; c \\ & \therefore (a - b) \; mod \; c = (a \; mod \; c - b \; mod \; c) \; mod \; c \end{aligned} a=cp+x(p,xZ,0x<c)b=cq+y(q,yZ,0y<c)(ab)modc=(c(pq)+xy)modc=(xy)modc(ab)modc=(amodcbmodc)modc

  3. 乘法, ( a b )    m o d    c = ( a    m o d    c × b    m o d    c )    m o d    c (ab) \; mod \; c = (a \; mod \; c \times b \; mod \; c) \; mod \; c (ab)modc=(amodc×bmodc)modc

    证明如下,

    设 a = c p + x ( p , x ∈ Z , 0 ≤ x < c ) b = c q + y ( q , y ∈ Z , 0 ≤ y < c )    ( a b )    m o d    c = ( ( c p + x ) ∗ ( c q + y ) )    m o d    c = ( c c p q + c p y + c q x + x y )    m o d    c = x y    m o d    c = ( a    m o d    c × b    m o d    c )    m o d    c \begin{aligned} & 设 a = cp + x (p, x \in Z, 0 \leq x < c) \\ & \quad b = cq + y (q, y \in Z, 0 \leq y < c) \\ & \quad \; (ab) \; mod \; c \\ & = ((cp + x) * (cq + y)) \; mod \; c \\ & = (ccpq + cpy + cqx + xy) \; mod \; c \\ & = xy \; mod \; c \\ & = (a \; mod \; c \times b \; mod \; c) \; mod \; c \end{aligned} a=cp+x(p,xZ,0x<c)b=cq+y(q,yZ,0y<c)(ab)modc=((cp+x)(cq+y))modc=(ccpq+cpy+cqx+xy)modc=xymodc=(amodc×bmodc)modc

  4. 扩展, ( a b )    m o d    c = ( a    m o d    c ) b    m o d    c (a^b) \; mod \; c = (a \; mod \; c)^b \; mod \; c (ab)modc=(amodc)bmodc ;

放缩性

  1. 乘法,有 a    m o d    b = c , d ≠ 0 a \; mod \; b = c, d \neq 0 amodb=c,d=0 ,则有 ( a d )    m o d    ( b d ) = c d (ad) \; mod \; (bd) = cd (ad)mod(bd)=cd

    证明如下,

    ∵ a    m o d    b = c    则令    a = b x + c ( x ∈ Z ) ∴ a d = b d x + c d ∴ ( b d x + c d )    m o d    ( b d ) = c d ∴ ( a d )    m o d    ( b d ) = c d \begin{aligned} & \because a \; mod \; b = c \; 则令 \; a = bx + c (x \in Z) \\ & \therefore ad = bdx + cd \\ & \therefore (bdx + cd) \; mod \; (bd) = cd \\ & \therefore (ad) \; mod \; (bd) = cd \end{aligned} amodb=c则令a=bx+c(xZ)ad=bdx+cd(bdx+cd)mod(bd)=cd(ad)mod(bd)=cd

  2. 除法,有 a    m o d    b = c , d ≠ 0 a \; mod \; b = c, d \neq 0 amodb=c,d=0 ,则有 ( a d )    m o d    ( b d ) = c d (\frac{a}{d}) \; mod \; (\frac{b}{d}) = \frac{c}{d} (da)mod(db)=dc

3. 推论

推论1

若 2 能整除 a a a 的最末位 (0 能被 ∀ Z \forall Z Z 整除) ,则 a a a 能被 2 整除;

证明如下,

设    a = 10 x + y ( x , y ∈ Z + , 0 ≤ y ≤ 9 ) ∴ 2 ∣ y 又 ∵ a    m o d    2 = ( 10 x    m o d    2 + y    m o d    2 )    m o d    2 = 0 ∴ 2 ∣ a \begin{aligned} & 设 \; a = 10x + y (x, y \in Z^{+}, 0 \leq y \leq 9) \\ & \therefore 2 \mid y \\ & 又\because a \; mod \; 2 = (10x \; mod \; 2 + y \; mod \; 2) \; mod \; 2 = 0 \\ & \therefore 2 \mid a \end{aligned} a=10x+y(x,yZ+,0y9)2yamod2=(10xmod2+ymod2)mod2=02a

推论2

若 4 能整除 a a a 的最末 2 位 (0 能被 ∀ Z \forall Z Z 整除) ,则 a a a 能被 4 整除;

证明如下,

设    a = 100 x + y ( x , y ∈ Z + , 0 ≤ y ≤ 99 ) ∴ 4 ∣ y 又 ∵ a    m o d    4 = ( 100 x    m o d    4 + y    m o d    4 )    m o d    4 = 0 ∴ 4 ∣ a \begin{aligned} & 设 \; a = 100x + y (x, y \in Z^{+}, 0 \leq y \leq 99) \\ & \therefore 4 \mid y \\ & 又\because a \; mod \; 4 = (100x \; mod \; 4 + y \; mod \; 4) \; mod \; 4 = 0 \\ & \therefore 4 \mid a \end{aligned} a=100x+y(x,yZ+,0y99)4yamod4=(100xmod4+ymod4)mod4=04a

推论3

若 8 能整除 a a a 的最末 3 位 (0 能被 ∀ Z \forall Z Z 整除) ,则 a a a 能被 8 整除;

证明如下,

设    a = 1000 x + y ( x , y ∈ Z + , 0 ≤ y ≤ 999 ) ∴ 8 ∣ y 又 ∵ a    m o d    8 = ( 1000 x    m o d    8 + y    m o d    8 )    m o d    8 = 0 ∴ 8 ∣ a \begin{aligned} & 设 \; a = 1000x + y (x, y \in Z^{+}, 0 \leq y \leq 999) \\ & \therefore 8 \mid y \\ & 又\because a \; mod \; 8 = (1000x \; mod \; 8 + y \; mod \; 8) \; mod \; 8 = 0 \\ & \therefore 8 \mid a \end{aligned} a=1000x+y(x,yZ+,0y999)8yamod8=(1000xmod8+ymod8)mod8=08a

推论4

若 3 能整除 a a a 的各个数位之和,则 a a a 能被 3 整除;

证明如下,以 3 位数为例,

设    a = x y z ‾    ( x , y , z ∈ Z + , 1 ≤ x ≤ 9 , 0 ≤ y , z ≤ 9 ) ∴ ( x + y + z )    m o d    3 = 0 ∴ x y z ‾    m o d    3 = ( 100 x + 10 y + z )    m o d    3 = 100 x    m o d    3 + 10 y    m o d    3 + z    m o d    3 = x    m o d    3 + y    m o d    3 + z    m o d    3 = 0 ∴ 3 ∣ a \begin{aligned} & 设 \; a = \overline{xyz} \; (x, y, z \in Z^{+}, 1 \leq x \leq 9, 0 \leq y,z \leq 9) \\ & \therefore (x + y + z) \; mod \; 3 = 0 \\ & \therefore \overline{xyz} \; mod \; 3 \\ & = (100x + 10 y + z) \; mod \; 3 \\ & = 100x \; mod \; 3 + 10y \; mod \; 3 + z \; mod \; 3 \\ & = x \; mod \; 3 + y \; mod \; 3 + z \; mod \; 3 \\ & = 0 \\ & \therefore 3 \mid a \end{aligned} a=xyz(x,y,zZ+,1x9,0y,z9)(x+y+z)mod3=0xyzmod3=(100x+10y+z)mod3=100xmod3+10ymod3+zmod3=xmod3+ymod3+zmod3=03a

推论5

若 9 能整除 a a a 的各个数位之和,则 a a a 能被 9 整除;

证明如下,以 3 位数为例,

设    a = x y z ‾    ( x , y , z ∈ Z + , 1 ≤ x ≤ 9 , 0 ≤ y , z ≤ 9 ) ∴ ( x + y + z )    m o d    9 = 0 ∴ x y z ‾    m o d    9 = ( 100 x + 10 y + z )    m o d    9 = 100 x    m o d    9 + 10 y    m o d    9 + z    m o d    9 = x    m o d    9 + y    m o d    9 + z    m o d    9 = 0 ∴ 9 ∣ a \begin{aligned} & 设 \; a = \overline{xyz} \; (x, y, z \in Z^{+}, 1 \leq x \leq 9, 0 \leq y,z \leq 9) \\ & \therefore (x + y + z) \; mod \; 9 = 0 \\ & \therefore \overline{xyz} \; mod \; 9 \\ & = (100x + 10 y + z) \; mod \; 9 \\ & = 100x \; mod \; 9 + 10y \; mod \; 9 + z \; mod \; 9 \\ & = x \; mod \; 9 + y \; mod \; 9 + z \; mod \; 9 \\ & = 0 \\ & \therefore 9 \mid a \end{aligned} a=xyz(x,y,zZ+,1x9,0y,z9)(x+y+z)mod9=0xyzmod9=(100x+10y+z)mod9=100xmod9+10ymod9+zmod9=xmod9+ymod9+zmod9=09a

推论6

若 11 能整除 a a a 的奇数数位与偶数数位的差,则 a a a 能被 11 整除;

证明如下,以 5 位数为例,

设    a = x 1 x 2 x 3 x 4 x 5 ‾    ( x 1 , x 2 , x 3 , x 4 , x 5 ∈ Z + , 1 ≤ x 1 ≤ 9 , 0 ≤ x 2 , x 3 , x 4 , x 5 ≤ 9 ) ∴ ( x 1 + x 3 + x 5 − x 2 − x 4 )    m o d    11 = 0 ∴ x 1 x 2 x 3 x 4 x 5 ‾    m o d    11 = ( ( 9999 + 1 ) x 1 + ( 1001 − 1 ) x 2 + ( 99 + 1 ) x 3 + ( 11 − 1 ) x 4 + x 5 )    m o d    11 = ( x 1 − x 2 + x 3 − x 4 + x 5 )    m o d    11 = 0 ∴ 11 ∣ a \begin{aligned} & 设 \; a = \overline{x_1x_2x_3x_4x_5} \; (x_1, x_2, x_3, x_4, x_5 \in Z^{+}, 1 \leq x_1 \leq 9, 0 \leq x_2, x_3, x_4, x_5 \leq 9) \\ & \therefore (x_1 + x_3 + x_5 - x_2 - x_4) \; mod \; 11 = 0 \\ & \therefore \overline{x_1x_2x_3x_4x_5} \; mod \; 11 \\ & = ((9999 + 1)x_1 + (1001 - 1)x_2 + (99 + 1)x_3 + (11 - 1)x_4 + x_5) \; mod \; 11 \\ & = (x_1 - x_2 + x_3 - x_4 + x_5) \; mod \; 11 \\ & = 0 \\ & \therefore 11 \mid a \end{aligned} a=x1x2x3x4x5(x1,x2,x3,x4,x5Z+,1x19,0x2,x3,x4,x59)(x1+x3+x5x2x4)mod11=0x1x2x3x4x5mod11=((9999+1)x1+(10011)x2+(99+1)x3+(111)x4+x5)mod11=(x1x2+x3x4+x5)mod11=011a

推论7

若 7, 11, 13 能整除 a a a 的末 3 位与末 3 位以前的数字所组成的数的差,则 a a a 能被 7, 11, 13 整除;

证明如下,以 5 位数为例,

设    a = x 1 x 2 x 3 x 4 x 5 ‾    ( x 1 , x 2 , x 3 , x 4 , x 5 ∈ Z + , 1 ≤ x 1 ≤ 9 , 0 ≤ x 2 , x 3 , x 4 , x 5 ≤ 9 ) ∴ x 3 x 4 x 5 ‾ − x 1 x 2 ‾    m o d    1001 = 0 ∴ x 1 x 2 x 3 x 4 x 5 ‾    m o d    1001 = ( x 1 x 2 ‾ ∗ 1000 + x 3 x 4 x 5 ‾ )    m o d    1001 = ( − x 1 x 2 ‾ + x 3 x 4 x 5 ‾ )    m o d    1001 = 0 ∴ 1001 ∣ a \begin{aligned} & 设 \; a = \overline{x_1x_2x_3x_4x_5} \; (x_1, x_2, x_3, x_4, x_5 \in Z^{+}, 1 \leq x_1 \leq 9, 0 \leq x_2, x_3, x_4, x_5 \leq 9) \\ & \therefore \overline{x_3x_4x_5} - \overline{x_1x_2} \; mod \; 1001 = 0 \\ & \therefore \overline{x_1x_2x_3x_4x_5} \; mod \; 1001 \\ & = (\overline{x_1x_2} * 1000 + \overline{x_3x_4x_5}) \; mod \; 1001 \\ & = (-\overline{x_1x_2} + \overline{x_3x_4x_5}) \; mod \; 1001 \\ & = 0 \\ & \therefore 1001 \mid a \end{aligned} a=x1x2x3x4x5(x1,x2,x3,x4,x5Z+,1x19,0x2,x3,x4,x59)x3x4x5x1x2mod1001=0x1x2x3x4x5mod1001=(x1x21000+x3x4x5)mod1001=(x1x2+x3x4x5)mod1001=01001a

三、同余

1. 定义

a , b ∈ Z , m ∈ Z + a, b \in Z,m \in Z^{+} a,bZmZ+ ,且 m ∣ ( a − b ) m \mid (a - b) m(ab) ,或 a = b + k m ( k ∈ Z ) a = b + km (k \in Z) a=b+km(kZ) 则称 a a a b b b m m m 同余,记为 a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm)

证明 m ∣ ( a − b ) ⇔ a ≡ b ( m o d    m ) m \mid (a - b) \Leftrightarrow a \equiv b (mod \; m) m(ab)ab(modm) 如下,

∵ m ∣ ( a − b ) ∴ m ( q 1 − q 2 ) = a − b ( q 1 , q 2 ∈ Z ) ∴ a − m q 1 = b − m p 2 = r ∴ a = m q 1 + r , b = m p 2 + r ∴ a ≡ b ( m o d    m ) \begin{aligned} & \because m \mid (a - b) \\ & \therefore m(q_1 - q_2) = a - b (q_1, q_2 \in Z) \\ & \therefore a - mq_1 = b - mp_2 = r \\ & \therefore a = mq_1 + r, b = mp_2 + r \\ & \therefore a \equiv b (mod \; m) \\ \end{aligned} m(ab)m(q1q2)=ab(q1,q2Z)amq1=bmp2=ra=mq1+r,b=mp2+rab(modm)

2. 性质

自反性

a ≡ a ( m o d    m ) a \equiv a (mod \; m) aa(modm)

证明如下,

∵ m ∣ ( a − a ) ∴ a ≡ a ( m o d    m ) \begin{aligned} & \because m \mid (a - a) \\ & \therefore a \equiv a (mod \; m) \end{aligned} m(aa)aa(modm)

对称性

a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm) b ≡ a ( m o d    m ) b \equiv a (mod \; m) ba(modm)

证明如下,

∵ a ≡ b ( m o d    m ) ∴ m ∣ ( a − b ) ∴ m ∣ ( b − a ) ∴ b ≡ a ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore m \mid (a - b) \\ & \therefore m \mid (b - a) \\ & \therefore b \equiv a (mod \; m) \end{aligned} ab(modm)m(ab)m(ba)ba(modm)

传递性

a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm) b ≡ c ( m o d    m ) b \equiv c (mod \; m) bc(modm) ,则 a ≡ c ( m o d    m ) a \equiv c (mod \; m) ac(modm)

证明如下,

∵ m ∣ ( a − b ) , m ∣ ( b − c ) ∴ m ∣ ( a − b + b − c ) ∴ m ∣ ( a − c ) ∴ a ≡ c ( m o d    m ) \begin{aligned} & \because m \mid (a - b), m \mid (b - c) \\ & \therefore m \mid (a - b + b - c) \\ & \therefore m \mid (a - c) \\ & \therefore a \equiv c (mod \; m) \end{aligned} m(ab),m(bc)m(ab+bc)m(ac)ac(modm)

同加性

a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm) ,则 a + c ≡ b + c ( m o d    m ) a + c \equiv b + c (mod \; m) a+cb+c(modm)

证明如下,

∵ a ≡ b ( m o d    m ) ∴ m ∣ ( a − b ) ∴ m ∣ ( a − b ) + c − c ∴ m ∣ ( a + c ) − ( b + c ) ∴ a + c ≡ b + c ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore m \mid (a - b) \\ & \therefore m \mid (a - b) + c - c \\ & \therefore m \mid (a + c) - (b + c) \\ & \therefore a + c \equiv b + c (mod \; m) \end{aligned} ab(modm)m(ab)m(ab)+ccm(a+c)(b+c)a+cb+c(modm)

同减性

a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm) ,则 a − c ≡ b − c ( m o d    m ) a - c \equiv b - c (mod \; m) acbc(modm)

证明如下,

∵ a ≡ b ( m o d    m ) ∴ m ∣ ( a − b ) ∴ m ∣ ( a − b ) − c + c ∴ m ∣ ( a − c ) − ( b − c ) ∴ a − c ≡ b − c ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore m \mid (a - b) \\ & \therefore m \mid (a - b) - c + c \\ & \therefore m \mid (a - c) - (b - c) \\ & \therefore a - c \equiv b - c (mod \; m) \end{aligned} ab(modm)m(ab)m(ab)c+cm(ac)(bc)acbc(modm)

同乘性

a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm) ,则 a c ≡ b c ( m o d    m ) ac \equiv bc (mod \; m) acbc(modm)

证明如下,

∵ a ≡ b ( m o d    m ) ∴ m ∣ ( a − b ) ∴ m ∣ c ( a − b ) ∴ m ∣ c a − c b ∴ a c ≡ b c ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore m \mid (a - b) \\ & \therefore m \mid c(a - b) \\ & \therefore m \mid ca - cb \\ & \therefore ac \equiv bc (mod \; m) \end{aligned} ab(modm)m(ab)mc(ab)mcacbacbc(modm)

同除性

a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm) c ∣ a , c ∣ b , ( c , m ) = 1 c \mid a, c \mid b, (c, m) = 1 ca,cb,(c,m)=1 ,则 a c ≡ b c ( m o d    m ) \frac ac \equiv \frac bc (mod \; m) cacb(modm)

∵ a ≡ b ( m o d    m ) ∴ m ∣ ( a − b ) 又 ∵ ( c , m ) = 1 ∴ m ∣ ( a − b ) c ∴ m ∣ a c − b c ∴ a c ≡ b c ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore m \mid (a - b) \\ & 又\because (c, m) = 1 \\ & \therefore m \mid \frac{(a - b)}{c} \\ & \therefore m \mid \frac ac - \frac bc \\ & \therefore \frac ac \equiv \frac bc (mod \; m) \end{aligned} ab(modm)m(ab)(c,m)=1mc(ab)mcacbcacb(modm)

同幂性

a ≡ b ( m o d    m ) a \equiv b (mod \; m) ab(modm) ,则 a n ≡ b n ( m o d    m ) a^n \equiv b^n (mod \; m) anbn(modm)

证明如下,

∵ a ≡ b ( m o d    m ) ∴ a    m o d    m = b    m o d    m ∴ ( a    m o d    m ) n = ( b    m o d    m ) n ∴ ( a    m o d    m ) n − ( b    m o d    m ) n = 0 ∴ a n ≡ b n ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore a \; mod \; m = b \; mod \; m \\ & \therefore (a \; mod \; m)^n = (b \; mod \; m)^n \\ & \therefore (a \; mod \; m)^n - (b \; mod \; m)^n = 0 \\ & \therefore a^n \equiv b^n (mod \; m) \end{aligned} ab(modm)amodm=bmodm(amodm)n=(bmodm)n(amodm)n(bmodm)n=0anbn(modm)

推论1

a ≡ b ( m o d    m ) , c ≡ d ( m o d    m ) a \equiv b (mod \; m), c \equiv d (mod \; m) ab(modm),cd(modm) ,则 a + b ≡ c + d ( m o d    m ) a + b \equiv c + d (mod \; m) a+bc+d(modm)

证明如下,

∵ a ≡ b ( m o d    m ) ∴ m ∣ ( a − b ) ∵ c ≡ d ( m o d    m ) ∴ m ∣ ( c − d ) ∴ m ∣ ( a − b + c − d ) ∴ a + b ≡ c + d ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore m \mid (a - b) \\ & \because c \equiv d (mod \; m) \\ & \therefore m \mid (c - d) \\ & \therefore m \mid (a - b + c - d) \\ & \therefore a + b \equiv c + d (mod \; m) \end{aligned} ab(modm)m(ab)cd(modm)m(cd)m(ab+cd)a+bc+d(modm)

推论2

a ≡ b ( m o d    m ) , c ≡ d ( m o d    m ) a \equiv b (mod \; m), c \equiv d (mod \; m) ab(modm),cd(modm) ,则 a b ≡ c d ( m o d    m ) ab \equiv cd (mod \; m) abcd(modm)

证明如下,

∵ a ≡ b ( m o d    m ) ∴ m ∣ c ( a − b ) ∵ c ≡ d ( m o d    m ) ∴ m ∣ a ( c − d ) ∴ m ∣ ( a c − b c + b c − c d ) ∴ a b ≡ c d ( m o d    m ) \begin{aligned} & \because a \equiv b (mod \; m) \\ & \therefore m \mid c(a - b) \\ & \because c \equiv d (mod \; m) \\ & \therefore m \mid a(c - d) \\ & \therefore m \mid (ac - bc + bc - cd) \\ & \therefore ab \equiv cd (mod \; m) \end{aligned} ab(modm)mc(ab)cd(modm)ma(cd)m(acbc+bccd)abcd(modm)

推论3

a    m o d    p = x , a    m o d    q = x , ( p , q ) = 1 a \; mod \; p = x, a \; mod \; q = x, (p, q) = 1 amodp=x,amodq=x,(p,q)=1 ,则 a    m o d    ( p q ) = x a \; mod \; (pq) = x amod(pq)=x

证明如下,

∵ a    m o d    p = x    则令    s p = a − x    a    m o d    q = x    则令    t q = a − x ∴ s p = t q ∵ ( p , q ) = 1 ∴ s = n q ∴ a = n p q + x ∴ a    m o d    ( p q ) = x \begin{aligned} & \because a \; mod \; p = x \; 则令 \; sp = a - x \\ & \quad \; a \; mod \; q = x \; 则令 \; tq = a - x \\ & \therefore sp = tq \\ & \because (p, q) = 1 \\ & \therefore s = nq \\ & \therefore a = npq + x \\ & \therefore a \; mod \; (pq) = x \end{aligned} amodp=x则令sp=axamodq=x则令tq=axsp=tq(p,q)=1s=nqa=npq+xamod(pq)=x

相关文章:

  • React(9)-组件引用传递(高级应用)
  • Flink在Window上的开发环境搭建
  • elasticsearch ES新增字段并赋初始值
  • DOM--预加载和懒加载
  • HCIA网络课程第七周作业
  • Nacos2.1.1 github下载zip太慢解决方法及资源分享
  • 集群外Prometheus 集群 k8s
  • 《Python编程:从入门到实战》学习笔记 第4章 操作列表
  • Linux当中如何隐藏和查看进程
  • 【C++ Primer Plus】第6章 分支语句和逻辑运算符
  • 案例分享 | 建筑师灵活用工平台产品规划设计
  • 基于springboot+vue的大学生交友活动管理网站 elementui
  • 神经网络建模的基本思想,神经网络语言模型详解
  • 使用VMware搭建OceanStor_eStor存储超详细教程
  • main函数执行前执行和执行后执行
  • 时间复杂度分析经典问题——最大子序列和
  • [iOS]Core Data浅析一 -- 启用Core Data
  • 《用数据讲故事》作者Cole N. Knaflic:消除一切无效的图表
  • CSS盒模型深入
  • Go 语言编译器的 //go: 详解
  • httpie使用详解
  • IIS 10 PHP CGI 设置 PHP_INI_SCAN_DIR
  • Java 多线程编程之:notify 和 wait 用法
  • Mithril.js 入门介绍
  • mockjs让前端开发独立于后端
  • open-falcon 开发笔记(一):从零开始搭建虚拟服务器和监测环境
  • SQLServer之索引简介
  • weex踩坑之旅第一弹 ~ 搭建具有入口文件的weex脚手架
  • 精益 React 学习指南 (Lean React)- 1.5 React 与 DOM
  • 快速构建spring-cloud+sleuth+rabbit+ zipkin+es+kibana+grafana日志跟踪平台
  • 区块链将重新定义世界
  • 一、python与pycharm的安装
  • 自定义函数
  • Oracle Portal 11g Diagnostics using Remote Diagnostic Agent (RDA) [ID 1059805.
  • 东超科技获得千万级Pre-A轮融资,投资方为中科创星 ...
  • ​力扣解法汇总1802. 有界数组中指定下标处的最大值
  • ### Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLTr
  • #git 撤消对文件的更改
  • #在线报价接单​再坚持一下 明天是真的周六.出现货 实单来谈
  • (TOJ2804)Even? Odd?
  • (补)B+树一些思想
  • (超简单)构建高可用网络应用:使用Nginx进行负载均衡与健康检查
  • (二)windows配置JDK环境
  • (附源码)springboot工单管理系统 毕业设计 964158
  • (附源码)springboot优课在线教学系统 毕业设计 081251
  • (机器学习-深度学习快速入门)第三章机器学习-第二节:机器学习模型之线性回归
  • (六)软件测试分工
  • (一)使用IDEA创建Maven项目和Maven使用入门(配图详解)
  • .FileZilla的使用和主动模式被动模式介绍
  • .NET 使用 ILMerge 合并多个程序集,避免引入额外的依赖
  • .NET构架之我见
  • .pyc文件是什么?
  • /var/lib/dpkg/lock 锁定问题
  • @Service注解让spring找到你的Service bean
  • [ C++ ] STL priority_queue(优先级队列)使用及其底层模拟实现,容器适配器,deque(双端队列)原理了解