当前位置: 首页 > news >正文

(二)Pytorch快速搭建神经网络模型实现气温预测回归(代码+详细注解)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、数据集
  • 二、导入数据以及展示部分
    • 1.导入数据集以及对数据集进行处理
    • 2.展示数据(看看就好)
  • 三(1)、搭建网络进行预测(理解版)
  • 三(2)、搭建网络进行预测(应用版)
  • 四、 对预测结果进行一个展示,蓝色真实值,红色预测值
  • 总结


前言

深度学习pytorch系列第二篇,第一篇实现的是分类任务,这篇是回归任务,大差不差,重在理解,具体的理解内容我都以注释的形式放在了代码中,方便大家阅读


一、数据集

想要复现的可以下载
链接:网盘链接
提取码:k6a4

二、导入数据以及展示部分

1.导入数据集以及对数据集进行处理

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
# 过滤警告
import warnings
warnings.filterwarnings("ignore")
# 读取数据
features = pd.read_csv('data/temps.csv')
#
#看看数据长什么样子
# print(features.head())
# print('数据维度:', features.shape)
# 数据维度:(348, 9),348条数据,每条8个特征x,1个标签y
# 处理时间数据
import datetime
# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']
#
# # datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
# 在打印的结果中,每个datetime.datetime对象的后面两个0表示小时和分钟,没有时默认为0
# print(dates[:5])
# 独热编码
# # 将字符串进行onehot
# # 周一 周二 周三 周四 周五 周六 周天
# # 如果是周一,编码就是
# # 1000000
# Pandas库中的get_dummies函数,是一种独热编码(One-Hot Encoding)的方法
features = pd.get_dummies(features)# print(features.head(5))
# print(features.shape)
# 此时的数据维度:(348, 15),多的7个是日期的七天
# 取标签
labels = np.array(features['actual'])
# 在特征中去掉标签,features.drop,去掉标签列
features= features.drop('actual', axis = 1)
# 名字单独保存一下,以备后患
feature_list = list(features.columns)
# 转换成合适的格式
features = np.array(features)
# print(features.shape)
# print(features)
"""
数据标准化
由于神经网络在训练的过程中具有倾向性,数值越大,认为越重要
# 但是在月份这种重要程度与数值无关的特征上,这种倾向性就会出错
# 因此进行标准化,使数据以零点为中心均匀分布
# (x-u)/σ
# x-u  去均值
# /σ  除以标准差:让离散数据更加收敛
标准化通常是针对特征而不是标签的。
标准化的目的是使特征具有相同的尺度,以便模型能够更好地学习权重并提高模型的性能。
标签(也称为目标变量)通常不需要标准化,因为它们是模型试图预测的值,而不是用于学习权重的输入。
"""
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
"""
[ 0.         -1.5678393  -1.65682171 -1.48452388 -1.49443549 -1.3470703-1.98891668  2.44131112 -0.40482045 -0.40961596 -0.40482045 -0.40482045-0.41913682 -0.40482045]标准化处理后的数据以零点为中心,均匀分布
"""

上述代码中的初始数据集为:
在这里插入图片描述
处理完成后的数据样貌:
在这里插入图片描述

2.展示数据(看看就好)

代码如下(示例):

# 该段是展示一下数据的样貌
plt.style.use('fivethirtyeight')
# 设置布局
# 4个子图,两行两列
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
# 坐标倾斜45度
fig.autofmt_xdate(rotation = 45)# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
#
# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
#
# 朋友感觉的值
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
# 子图之间间隔多少
plt.tight_layout(pad=2)
plt.show()

展示图如下:
在这里插入图片描述


三(1)、搭建网络进行预测(理解版)

该过程是一步一步构建网络,促进理解,后边会附上更为简单的网络结构


x = torch.tensor(input_features, dtype=float)
y = torch.tensor(labels, dtype=float)
# # 权重参数初始化
# (14, 128),将14个特征转成128个神经元,可以理解为转成128个特征
# requires_grad = True,是否求导,也就是是否记录梯度
weights = torch.randn((14, 128), dtype=float, requires_grad=True)
biases = torch.randn(128, dtype=float, requires_grad=True)
weights2 = torch.randn((128, 1), dtype=float, requires_grad=True)
biases2 = torch.randn(1, dtype=float, requires_grad=True)
# 学习率  :决定梯度更新幅度的大小,计算出来的梯度只能确定方向
# 这个幅度不能太大
learning_rate = 0.001
losses = []
# 迭代次数,每次算梯度,然后更新
for i in range(1000):# 计算隐层hidden = x.mm(weights) + biases# 加入激活函数,非线性映射hidden = torch.relu(hidden)# 预测结果  :h1*w2+b2=预测值predictions = hidden.mm(weights2) + biases2# 通计算损失loss = torch.mean((predictions - y) ** 2)losses.append(loss.data.numpy())# 打印损失值if i % 100 == 0:print('loss:', loss)# 返向传播计算loss.backward()# 更新参数#     grad.data  取梯度,然后乘以学习率,应该沿着梯度的反方向更新weights.data.add_(- learning_rate * weights.grad.data)biases.data.add_(- learning_rate * biases.grad.data)weights2.data.add_(- learning_rate * weights2.grad.data)biases2.data.add_(- learning_rate * biases2.grad.data)# 每次迭代都得记得清空#     每次迭代过程都是独立的,之前计算的梯度要清零# 在torch中,如果不清零,梯度就会累加weights.grad.data.zero_()biases.grad.data.zero_()weights2.grad.data.zero_()biases2.grad.data.zero_()
print(predictions.shape)
print(predictions)

三(2)、搭建网络进行预测(应用版)

实际应用中,往往会这样实现

# 更简单的构建网络模型
# 取特征个数
# 0是样本数;1是特征数
input_size = input_features.shape[1]
# print(input_size)  14 有14个特征
# 隐层个数
hidden_size = 128
output_size = 1
batch_size = 16
# Sequential序列模块,按顺序执行
my_nn = torch.nn.Sequential(# 计算隐层,相当于wx+b,参数是自动更新的torch.nn.Linear(input_size, hidden_size),
#     激活函数torch.nn.Sigmoid(),
#     预测结果  :h1*w2+b2=预测值torch.nn.Linear(hidden_size, output_size),
)
# 计算损失
# reduction='mean  平均损失
cost = torch.nn.MSELoss(reduction='mean')
# 优化器
# my_nn.parameters() 更新nn中所有参数
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
# ADM优化器,比SGD(梯度下降)效果好,效率高
# 训练网络
losses = []
# 迭代1000次
for i in range(1000):#     每次取一个batch的数据,每次只取一批数据batch_loss = []# MINI-Batch方法来进行训练#   for start in range(0, len(input_features), batch_size):# 从0开始,到整个数据结束,取batch,间隔是一个batch_size大小for start in range(0, len(input_features), batch_size):end = start + batch_size if start + batch_size < len(input_features) else len(input_features)  # 判断索引越界xx = torch.tensor(input_features[start:end], dtype=torch.float, requires_grad=True)yy = torch.tensor(labels[start:end], dtype=torch.float, requires_grad=True)prediction = my_nn(xx)loss = cost(prediction, yy)#         通过优化器进行梯度清零optimizer.zero_grad()#     反向传播loss.backward(retain_graph=True)#     更新参数optimizer.step()#     将每一个batch的损失相加batch_loss.append(loss.data.numpy())# 打印损失if i % 100 == 0:losses.append(np.mean(batch_loss))print(i, np.mean(batch_loss))
x = torch.tensor(input_features, dtype = torch.float)
# 所有的数据进行预测,得到结果,进行画图
predict = my_nn(x).data.numpy()

四、 对预测结果进行一个展示,蓝色真实值,红色预测值

# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60');
plt.legend()
plt.show()
# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');
# 层数越来越对,就会过拟合
# 什么是过拟合?过拟合(Overfitting)是指机器学习模型在训练数据上表现得很好,但在未见过的新数据上表现较差的现象。

在这里插入图片描述

总结

pytorch学习的第二篇啦,慢慢更新ing

相关文章:

  • String字符串性能优化的几种方案
  • C++中类和动态内存分配
  • linux硬盘扩容
  • 十六、RabbitMQ快速入门
  • 开源更安全? yum源配置/rpm 什么是SSH?
  • Vue 2.0中引入的类型检查Flow
  • TypeError: expected np.ndarray (got Tensor)解决办法
  • 【机器学习基础】对数几率回归(logistic回归)
  • elementplus DateTimePicker 日期范围选择器 设置默认时间范围为当前月的起始时间到结束时间
  • pytorch下载离线包的网址
  • 设置指定时间之前的时间不可选
  • kubernetes测试部署一个nginx
  • 【自学记录】深度学习进阶:自然语言处理(第一章 神经网络的复习)
  • Linux 启动停止重启jar包shell脚本
  • 【2023云栖】陈守元:阿里云开源大数据产品年度发布
  • 77. Combinations
  • Babel配置的不完全指南
  • emacs初体验
  • ES10 特性的完整指南
  • Median of Two Sorted Arrays
  • Objective-C 中关联引用的概念
  • React 快速上手 - 06 容器组件、展示组件、操作组件
  • TypeScript迭代器
  • unity如何实现一个固定宽度的orthagraphic相机
  • 罗辑思维在全链路压测方面的实践和工作笔记
  • 如何合理的规划jvm性能调优
  • 如何使用 JavaScript 解析 URL
  • 实战:基于Spring Boot快速开发RESTful风格API接口
  • 智能合约Solidity教程-事件和日志(一)
  • Salesforce和SAP Netweaver里数据库表的元数据设计
  • 策略 : 一文教你成为人工智能(AI)领域专家
  • ​软考-高级-系统架构设计师教程(清华第2版)【第20章 系统架构设计师论文写作要点(P717~728)-思维导图】​
  • #中国IT界的第一本漂流日记 传递IT正能量# 【分享得“IT漂友”勋章】
  • $HTTP_POST_VARS['']和$_POST['']的区别
  • ()、[]、{}、(())、[[]]命令替换
  • (003)SlickEdit Unity的补全
  • (11)工业界推荐系统-小红书推荐场景及内部实践【粗排三塔模型】
  • (day 12)JavaScript学习笔记(数组3)
  • (ibm)Java 语言的 XPath API
  • (Java实习生)每日10道面试题打卡——JavaWeb篇
  • (Mirage系列之二)VMware Horizon Mirage的经典用户用例及真实案例分析
  • (顶刊)一个基于分类代理模型的超多目标优化算法
  • (附源码)spring boot校园健康监测管理系统 毕业设计 151047
  • (十七)devops持续集成开发——使用jenkins流水线pipeline方式发布一个微服务项目
  • (四)【Jmeter】 JMeter的界面布局与组件概述
  • (五)c52学习之旅-静态数码管
  • (一)认识微服务
  • (转)GCC在C语言中内嵌汇编 asm __volatile__
  • (转)linux下的时间函数使用
  • (转贴)用VML开发工作流设计器 UCML.NET工作流管理系统
  • ***linux下安装xampp,XAMPP目录结构(阿里云安装xampp)
  • .net 4.0发布后不能正常显示图片问题
  • .NET C#版本和.NET版本以及VS版本的对应关系
  • .net core 6 集成 elasticsearch 并 使用分词器
  • .NET(C#) Internals: as a developer, .net framework in my eyes