当前位置: 首页 > news >正文

redis:七、集群方案(主从复制、哨兵模式、分片集群)和面试模板

redis集群方案

在Redis中提供的集群方案总共有三种(一般一个redis节点不超过10G内存)

  • 主从复制
  • 哨兵模式
  • 分片集群

主从复制(主从数据同步)

replid和offset

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

全量同步和增量同步具体过程

在这里插入图片描述

在这里插入图片描述

优缺点

优点:解决了系统的高并发读的问题。
缺点:无法保证系统的高可用,所以哨兵模式出现了。

哨兵模式

哨兵的作用

哨兵(Sentinel)实际上也是redis节点,它的具体功能如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作。
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主。
  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端。
    在这里插入图片描述

哨兵的监控(心跳机制、选主规则)

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

  • 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
  • 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

一旦发现主节点客观下线了。哨兵会推举新的主节点,选主规则如下:

  1. 判断主与从节点断开时间长短,如超过指定值就排除该从节点
  2. 然后判断从节点的slave-priority值,越小优先级越高
  3. 如果slave-prority一样,则判断slave节点的offset值,越大优先级越高
  4. 最后是判断slave节点的运行id大小,越小优先级越高。

集群脑裂

如果此时原本的主节点(暂时称为A)因为网络问题,没有回应心跳,那么哨兵便会进行选举出一个新的主节点(暂时称为B),这样就存在了两个主节点,像是大脑分两列了一样。等A节点网络恢复之后才会由主节点降为从节点。这个过程称为脑裂。
在这里插入图片描述
但是注意,这个选主并切换的过程需要一定时间,此时A节点还是可以被写入数据的(暂时称这段数据为message,因为A节点实际上没有宕机,只是因为网络分区等问题联系不上从节点和哨兵了)

当A节点被降为从节点时,A节点会清空自己的数据,复制B节点的数据。此时message就丢失了。

它的解决方案有两种,对应着redis的两个配置参数:

  1. min-replicas-to-write 1 表示最少的slave节点为1个
  2. min-replicas-max-lag 5 表示数据复制和同步的延迟不能超过5秒
    如果我们选了第一种解决方案,那么当哨兵联系不上A节点时,因为A节点没有slave了,此时数据过来,A节点会拒绝被写入数据,那么发送数据的服务方就会意识到数据没有正常发送,之后会采取相应的数据重传之类的解决方案。

如果我们选了第二种解决方案,那么就相当于限制了一开始A节点的网络情况,发现网络情况不好,就拒绝被写入数据。

其实就是分别针对脑裂时的2个特点:A节点网络有问题,和因为网络问题导致的和从节点、哨兵断开联系而进行的情况判断,如果发现符合这两个特点之一,那么就拒绝被写入数据,防止后来数据丢失。

优缺点

优点:解决了系统高可用的问题
缺点:无法解决海量数据存储还有高并发写的问题,此时分片集群就出现了。

分片集群

分片集群的结构如下:
在这里插入图片描述

它的结构特点为:

  • 集群中有多个master,每个master保存不同数据,且每个master都可以有多个slave节点。这样就解决了海量数据存储,高并发读写的问题。相当于把主从模式概括进来了。
  • 不再需要哨兵,直接master之间通过ping监测彼此健康状态。只要超过一定数量的master节点认为某个master节点宕机了,那么那个节点就客观下线了。相当于变形的哨兵模式。## 标题
  • 客户端请求可以访问集群任意节点,经过一定的路由规则,最终都会被转发到正确节点。

路由规则

Redis 分片集群引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,集群的每个节点负责一部分 hash 槽。这样能保证客户端请求不冲突地正确转发到redis的某个master节点上。
在这里插入图片描述

优缺点

优点:解决了系统的海量数据存储、高可用、高并发读写的问题。
缺点:集群维护很麻烦,而且集群之间的通信和心跳检测消耗大量的网络带宽,无法使用lua脚本和事务。

相关面试题

Redis集群有哪些方案, 知道嘛 ?

候选人:嗯~~,在Redis中提供的集群方案总共有三种:主从复制、哨兵模式、Redis分片集群

那你来介绍一下主从同步

候选人:嗯,是这样的,单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,可以搭建主从集群,实现读写分离。一般都是一主多从,主节点负责写数据,从节点负责读数据,主节点写入数据之后,需要把数据同步到从节点中。

能说一下,主从同步数据的流程吗?

候选人:嗯~~,好!主从同步分为了两个阶段,一个是全量同步,一个是增量同步

全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:

第一:从节点请求主节点同步数据,其中从节点会携带自己的replication id和offset偏移量。

第二:主节点判断是否是第一次请求,主要判断的依据就是,主节点与从节点是否是同一个replication id,如果不是,就说明是第一次同步,那主节点就会把自己的replication id和offset发送给从节点,让从节点与主节点的信息保持一致。

第三:在同时主节点会执行bgsave,生成rdb文件后,发送给从节点去执行,从节点先把自己的数据清空,然后执行主节点发送过来的rdb文件,这样就保持了一致

当然,如果在rdb生成执行期间,依然有请求到了主节点,而主节点会以命令的方式记录到缓冲区,缓冲区是一个日志文件,最后把这个日志文件发送给从节点,这样就能保证主节点与从节点完全一致了,后期再同步数据的时候,都是依赖于这个日志文件,这个就是全量同步

增量同步指的是,当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步。

怎么保证Redis的高并发高可用

候选人:首先可以搭建主从集群,再加上使用redis中的哨兵模式,哨兵模式可以实现主从集群的自动故障恢复,里面就包含了对主从服务的监控、自动故障恢复、通知;如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证redis的高并发高可用。

你们使用redis是单点还是集群,哪种集群

候选人:嗯!,我们当时使用的是主从(1主1从)加哨兵。一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用lua脚本和事务

相关文章:

  • 3.3 Binance_interface APP U本位合约行情-实时行情
  • Fink CDC数据同步(四)Mysql数据同步到Kafka
  • python+flask+django农产品供销展销电子商务系统lkw43
  • C++引用(内含和指针的对比)
  • Ubuntu22.04安装黑屏(进入U盘安装引导时 和 安装完成后)
  • 爬虫练习——动态网页的爬取(股票和百度翻译)
  • Netty应用(五) 之 Netty引入 EventLoop
  • 基于Vue的移动端UI框架整理
  • 内网安全-内网穿透
  • Stable Diffusion 模型下载:Disney Pixar Cartoon Type B(迪士尼皮克斯动画片B类)
  • vue+springboot前后端视频文件等的上传与展示(基于七牛云)
  • Elasticsearch:混合搜索是 GenAI 应用的未来
  • Leetcode 300 最长递增子序列
  • 【Java万花筒】加速Java应用程序:探索性能优化的利器
  • 基于华为云欧拉操作系统(HCE OS)构建HCE OS基础镜像
  • 07.Android之多媒体问题
  • JAVA之继承和多态
  • LeetCode29.两数相除 JavaScript
  • PHP 的 SAPI 是个什么东西
  • 基于OpenResty的Lua Web框架lor0.0.2预览版发布
  • 极限编程 (Extreme Programming) - 发布计划 (Release Planning)
  • 前端面试之CSS3新特性
  • nb
  • ​比特币大跌的 2 个原因
  • #DBA杂记1
  • $.ajax中的eval及dataType
  • (4)事件处理——(6)给.ready()回调函数传递一个参数(Passing an argument to the .ready() callback)...
  • (C#)Windows Shell 外壳编程系列9 - QueryInfo 扩展提示
  • (day6) 319. 灯泡开关
  • (pytorch进阶之路)扩散概率模型
  • (Redis使用系列) Springboot 整合Redisson 实现分布式锁 七
  • (附源码)ssm本科教学合格评估管理系统 毕业设计 180916
  • (九)信息融合方式简介
  • (蓝桥杯每日一题)平方末尾及补充(常用的字符串函数功能)
  • (免费分享)基于springboot,vue疗养中心管理系统
  • (全部习题答案)研究生英语读写教程基础级教师用书PDF|| 研究生英语读写教程提高级教师用书PDF
  • (十八)三元表达式和列表解析
  • (转载)在C#用WM_COPYDATA消息来实现两个进程之间传递数据
  • ***微信公众号支付+微信H5支付+微信扫码支付+小程序支付+APP微信支付解决方案总结...
  • .Net - 类的介绍
  • .NET 8.0 发布到 IIS
  • .net web项目 调用webService
  • .net中的Queue和Stack
  • /usr/bin/python: can't decompress data; zlib not available 的异常处理
  • ??myeclipse+tomcat
  • @Async注解的坑,小心
  • @data注解_一枚 架构师 也不会用的Lombok注解,相见恨晚
  • @Pointcut 使用
  • [ 代码审计篇 ] 代码审计案例详解(一) SQL注入代码审计案例
  • [ajaxupload] - 上传文件同时附件参数值
  • [ARC066F]Contest with Drinks Hard
  • [C#]winform部署PaddleOCRV3推理模型
  • [HDOJ4911]Inversion
  • [Hibernate] - Fetching strategies
  • [INSTALL_FAILED_TEST_ONLY],Android开发出现应用未安装